Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 54367 by maxmathsup by imad last updated on 02/Feb/19

find ∫_1 ^(+∞)  (([t])/t) t^(−p) dt interms of ξ(p) with p>0 .

$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\left[{t}\right]}{{t}}\:{t}^{−{p}} {dt}\:{interms}\:{of}\:\xi\left({p}\right)\:{with}\:{p}>\mathrm{0}\:. \\ $$

Commented bymaxmathsup by imad last updated on 04/Feb/19

let A_p =∫_1 ^(+∞)    (([t])/t) t^(−p)  dt ⇒A_p =Σ_(n=1) ^(+∞)   ∫_n ^(n+1)    (n/t) t^(−p)  dt  =Σ_(n=1) ^∞  n ∫_n ^(n+1)  t^(−p−1) dt =Σ_(n=1) ^∞  n[(1/(−p)) t^(−p) ]_n ^(n+1)   =Σ_(n=1) ^∞  (−(n/p)){ (1/((n+1)^p )) −(1/n^p )} =(1/p){Σ_(n=1) ^∞   (1/n^(p−1) ) −Σ_(n=1) ^∞  (n/((n+1)^p ))}  =(1/p){ Σ_(n=1) ^∞   (1/n^(p−1) ) −Σ_(n=2) ^∞  ((n−1)/n^p )} =(1/p){ 1+Σ_(n=2) ^∞   (1/n^p )} =((ξ(p))/p) ⇒  A_p =((ξ(p))/p)  .

$${let}\:{A}_{{p}} =\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{\left[{t}\right]}{{t}}\:{t}^{−{p}} \:{dt}\:\Rightarrow{A}_{{p}} =\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:\:\:\frac{{n}}{{t}}\:{t}^{−{p}} \:{dt} \\ $$ $$=\sum_{{n}=\mathrm{1}} ^{\infty} \:{n}\:\int_{{n}} ^{{n}+\mathrm{1}} \:{t}^{−{p}−\mathrm{1}} {dt}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{n}\left[\frac{\mathrm{1}}{−{p}}\:{t}^{−{p}} \right]_{{n}} ^{{n}+\mathrm{1}} \\ $$ $$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\frac{{n}}{{p}}\right)\left\{\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{p}} }\:−\frac{\mathrm{1}}{{n}^{{p}} }\right\}\:=\frac{\mathrm{1}}{{p}}\left\{\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{{p}−\mathrm{1}} }\:−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{n}}{\left({n}+\mathrm{1}\right)^{{p}} }\right\} \\ $$ $$=\frac{\mathrm{1}}{{p}}\left\{\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{{p}−\mathrm{1}} }\:−\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{{n}−\mathrm{1}}{{n}^{{p}} }\right\}\:=\frac{\mathrm{1}}{{p}}\left\{\:\mathrm{1}+\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{{p}} }\right\}\:=\frac{\xi\left({p}\right)}{{p}}\:\Rightarrow \\ $$ $${A}_{{p}} =\frac{\xi\left({p}\right)}{{p}}\:\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19

∫_1 ^∞ (([t])/t)t^(−p) dt  ∫_1 ^2 1×t^(−p−1) dt+∫_2 ^3 2×t^(−p−1) dt+∫_3 ^4 3×t^(−p−1) dt...  1×((t^(−p) /(−p)))_1 ^2 +2×((t^(−p) /(−p)))_2 ^3 +3×((t^(−p) /(−p)))_3 ^4 +...  =((1/(−p)))[((1/2^p )−(1/1^p ))+2×((1/3^p )−(1/2^p ))+3×((1/4^p )−(1/3^p ))+...]  =((1/p))((1/1^p )+(1/2^p )+(1/3^p )+(1/4^p )+...∞)

$$\int_{\mathrm{1}} ^{\infty} \frac{\left[{t}\right]}{{t}}{t}^{−{p}} {dt} \\ $$ $$\int_{\mathrm{1}} ^{\mathrm{2}} \mathrm{1}×{t}^{−{p}−\mathrm{1}} {dt}+\int_{\mathrm{2}} ^{\mathrm{3}} \mathrm{2}×{t}^{−{p}−\mathrm{1}} {dt}+\int_{\mathrm{3}} ^{\mathrm{4}} \mathrm{3}×{t}^{−{p}−\mathrm{1}} {dt}... \\ $$ $$\mathrm{1}×\left(\frac{{t}^{−{p}} }{−{p}}\right)_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{2}×\left(\frac{{t}^{−{p}} }{−{p}}\right)_{\mathrm{2}} ^{\mathrm{3}} +\mathrm{3}×\left(\frac{{t}^{−{p}} }{−{p}}\right)_{\mathrm{3}} ^{\mathrm{4}} +... \\ $$ $$=\left(\frac{\mathrm{1}}{−{p}}\right)\left[\left(\frac{\mathrm{1}}{\mathrm{2}^{{p}} }−\frac{\mathrm{1}}{\mathrm{1}^{{p}} }\right)+\mathrm{2}×\left(\frac{\mathrm{1}}{\mathrm{3}^{{p}} }−\frac{\mathrm{1}}{\mathrm{2}^{{p}} }\right)+\mathrm{3}×\left(\frac{\mathrm{1}}{\mathrm{4}^{{p}} }−\frac{\mathrm{1}}{\mathrm{3}^{{p}} }\right)+...\right] \\ $$ $$=\left(\frac{\mathrm{1}}{{p}}\right)\left(\frac{\mathrm{1}}{\mathrm{1}^{{p}} }+\frac{\mathrm{1}}{\mathrm{2}^{{p}} }+\frac{\mathrm{1}}{\mathrm{3}^{{p}} }+\frac{\mathrm{1}}{\mathrm{4}^{{p}} }+...\infty\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com