Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 54372 by maxmathsup by imad last updated on 02/Feb/19

let  f(x) =∫_0 ^(2π)   ((sint)/(x+sint))dt     1) calculate  f(x)  2) calculate g(x) =∫_0 ^(2π)   ((sint)/((x+sint)^2 )) dt   3) calculste for n∈N    ∫_0 ^(2π)  ((sint)/((x+sint)^n ))dt   4) calculate ∫_0 ^(2π)    ((sint)/(2+sint))dt  and ∫_0 ^(2π)   ((sint)/((2+sint)^2 ))dt .

letf(x)=02πsintx+sintdt1)calculatef(x)2)calculateg(x)=02πsint(x+sint)2dt3)calculstefornN02πsint(x+sint)ndt4)calculate02πsint2+sintdtand02πsint(2+sint)2dt.

Commented by maxmathsup by imad last updated on 03/Feb/19

1) we have f(x)=∫_0 ^(2π)  ((x+sint −x)/(x+sint))dt =2π −x ∫_0 ^(2π)    (dt/(x+sint))  chang.e^(it) =z give  ∫_0 ^(2π)   (dt/(x+sint)) =∫_(∣z∣=1)    (1/(x +((z−z^(−1) )/(2i)))) (dz/(iz)) = ∫_(∣z∣=1)    (dz/(iz(x+((z−z^(−1) )/(2i)))))  =∫_(∣z∣=1)   (dz/(ixz +((z^2 −1)/2))) =∫_(∣z∣=1)     ((2dz)/(2ixz+z^2 −1)) =∫_(∣z∣=1)     ((2dz)/(z^2  +2ixz −1))  let ϕ(z) =(2/(z^2 +2ixz −1))  poles of ϕ ?  Δ^′ =−x^2 +1 =1−x^2   case 1      1−x^2 >0 ⇒ z_1 = −ix +(√(1−x^2 ))and z_2 =−ix−(√(1−x^2 ))  ∣z_1 ∣−1 =(√(1−x^2 +x^2 ))=1−1=0 ⇒∣z_1 ∣=1  ∣z_2 ∣ −1 =(√(x^2 +1−x^2 ))−1=0 ⇒ ∣z_2 ∣=1  ∫_(∣z∣=1) ϕ(z)dz =2iπ {Res(ϕ,z_1 ) +Res(ϕ,z_2 )} but ϕ(z)=(2/((z−z_1 )(z−z_2 )))  Res(ϕ,z_1 )  =(2/(z_1 −z_2 )) =(2/(2(√(1−x^2 )))) =(1/(√(1−x^2 )))  Res(ϕ,z_2 ) = (2/(z_2 −z_1 )) =(2/(−2(√(1−x^2 )))) =((−1)/(√(1−x^2 ))) ⇒∫_(∣z∣=1) ϕ(z)dz =0  ⇒f(x)=2π  case2  1−x^2 <0 ⇒∣x∣>1 ⇒Δ^′ =(i(√(x^2 −1))))^2  ⇒  z_1 =−ix +i(√(x^2 −1)) and z_2 =−ix−i(√(x^2 −1))    if x>1  ∣z_1 ∣ −1 =∣x−(√(x^2 −1))∣ −1  =x−(√(x^2 −1))−1 =x−1−(√(x^2 −1))  (x−1)^2 −(x^2 −1)=x^2 −2x +1−x^2  +1 =−2(x−1)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1 =∣x+(√(x^2 −1))∣−1 =x−1 +(√(x^2 −1))>0 ⇒∣z_2 ∣>1 (out of circle)  ∫_(∣z∣=1)  ϕ(z)dz =2iπ Res(ϕ,z_1 )  Res(ϕ,z_1 ) =(2/(z_1 −z_2 )) =(2/(2i(√(x^2 −1)))) =(1/(i(√(x^2 −1)))) ⇒  ∫_(∣z∣=1) ϕ(z)dz =2π (1/(√(x^2 −1))) =((2π)/(√(x^2 −1))) ⇒f(x)=2π −((2πx)/(√(x^2 −1)))  =2π{(((√(x^2 −1))−x)/(√(x^2 −1)))} .rest to study the case x<−1...

1)wehavef(x)=02πx+sintxx+sintdt=2πx02πdtx+sintchang.eit=zgive02πdtx+sint=z∣=11x+zz12idziz=z∣=1dziz(x+zz12i)=z∣=1dzixz+z212=z∣=12dz2ixz+z21=z∣=12dzz2+2ixz1letφ(z)=2z2+2ixz1polesofφ?Δ=x2+1=1x2case11x2>0z1=ix+1x2andz2=ix1x2z11=1x2+x2=11=0⇒∣z1∣=1z21=x2+1x21=0z2∣=1z∣=1φ(z)dz=2iπ{Res(φ,z1)+Res(φ,z2)}butφ(z)=2(zz1)(zz2)Res(φ,z1)=2z1z2=221x2=11x2Res(φ,z2)=2z2z1=221x2=11x2z∣=1φ(z)dz=0f(x)=2πcase21x2<0⇒∣x∣>1Δ=(ix21))2z1=ix+ix21andz2=ixix21ifx>1z11=∣xx211=xx211=x1x21(x1)2(x21)=x22x+1x2+1=2(x1)<0⇒∣z1∣<1z21=∣x+x211=x1+x21>0⇒∣z2∣>1(outofcircle)z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=2z1z2=22ix21=1ix21z∣=1φ(z)dz=2π1x21=2πx21f(x)=2π2πxx21=2π{x21xx21}.resttostudythecasex<1...

Commented by maxmathsup by imad last updated on 03/Feb/19

2) we have f(x)=∫_0 ^(2π)   ((sint)/(x+sint)) dt ⇒f^′ (x) =−∫_0 ^(2π)   ((sint)/((x+sint)^2 ))dt =−g(x) ⇒  g(x)=−f^′ (x)  case 1  ∣x∣<1 ⇒f(x)=2π ⇒g^′ (x)=0  case 2  x>1 ⇒f(x)=2π −2π (x/(√(x^2 −1))) ⇒g^′ (x)=+2π ((x/(√(x^2 −1))))^′   =2π (((√(x^2 −1))−x  (x/(√(x^2 −1))))/(x^2 −1)) =2π ((x^2 −1−x^2 )/((x^2 −1)(√(x^2 −1)))) =−((2π)/((x^2 −1)(√(x^2 −1))))

2)wehavef(x)=02πsintx+sintdtf(x)=02πsint(x+sint)2dt=g(x)g(x)=f(x)case1x∣<1f(x)=2πg(x)=0case2x>1f(x)=2π2πxx21g(x)=+2π(xx21)=2πx21xxx21x21=2πx21x2(x21)x21=2π(x21)x21

Commented by maxmathsup by imad last updated on 03/Feb/19

4) ∫_0 ^(2π)  ((sint)/(2 +sint))dt =f(2) =2π −2π (2/(√3)) =2π(1−(2/(√3)))=((2π((√3)−2))/(√3))  ∫_0 ^(2π)   ((sint)/((2+sint)^2 )) dt =g(2)=((−2π)/(3(√3)))

4)02πsint2+sintdt=f(2)=2π2π23=2π(123)=2π(32)302πsint(2+sint)2dt=g(2)=2π33

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19

1)∫_0 ^(2π) ((sint)/(x+sint))dt  ∫((x+sint−x)/(x+sint))dt  ∫dt−x∫(dt/(x+((2tan(t/2))/(1+tan^2 (t/2)))))  ∫dt−x∫((sec^2 (t/2))/(xtan^2 (t/2)+x+2tan(t/2)))dt  ∫dt−∫((sec^2 (t/2))/(tan^2 (t/2)+2tan(t/2)×(1/x)+(1/x^2 )+1−(1/x^2 )))  ∫dt−2∫((sec^2 (t/2)×(1/2))/((tan(t/2)+(1/x))^2 +((√(1−(1/x^2 ))) )^2 ))   ∫dt−2∫((d(tan(t/2)+(1/x)))/((tan(t/2)+(1/x))^2 +((√(1−(1/x^2 ))) )^2 ))  so answer is  ∣t−(2/(√(1−(1/x^2 ))))tan^(−1) (((tan(t/2)+(1/x))/((√(1−(1/x^2 ))) )))∣_0 ^(2π)   =[2π−{(2/(√(1−(1/x^2 ))))tan^(−1) (((tanπ+(1/x))/(√(1−(1/x^2 ))))−((tan0+(1/x))/(√(1−(1/x^2 )))))]  =2π  pls check mistKe if any...

1)02πsintx+sintdtx+sintxx+sintdtdtxdtx+2tant21+tan2t2dtxsec2t2xtan2t2+x+2tant2dtdtsec2t2tan2t2+2tant2×1x+1x2+11x2dt2sec2t2×12(tant2+1x)2+(11x2)2dt2d(tant2+1x)(tant2+1x)2+(11x2)2soanswerist211x2tan1(tant2+1x11x2)02π=[2π{211x2tan1(tanπ+1x11x2tan0+1x11x2)]=2πplscheckmistKeifany...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com