All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 54374 by maxmathsup by imad last updated on 02/Feb/19
calculateh(a)=∫−∞+∞cos(at)ch(t2)dt.
Commented by Abdo msup. last updated on 08/Feb/19
h(a)=t2=x2∫−∞+∞cos(2ax)ch(x)dx=4∫0∞cos(2ax)ex+e−x2dx=8∫0∞e−xcos(2ax)1+e−2xdx=8∫0∞e−xcos(2ax)(∑n=0∞(−1)ne−2nx)dx=8∑n=0∞(−1)n∫0∞e−(2n+1)xcos(2ax)dxletAn=∫0∞e−(2n+1)xcos(2ax)dx⇒An=Re(∫0∞e−(2n+1)xe2iaxdx)but∫0∞e(−(2n+1)+2ia)xdx=[1−(2n+1)+2iae(−(2n+1)+2ia)x]0+∞=1−(2n+1)+2ia=−1(2n+1)−2ia=−2n+1+2ia(2n+1)2+4a2⇒An=−2n+1(2n+1)2+4a2⇒h(a)=8∑n=0∞(−1)n+12n+1(2n+1)2+4a2andthisseriecanbecalculatedbyfourierseries...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com