Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 54376 by Abdo msup. last updated on 02/Feb/19

1) calculate  f(a) =∫_(−∞) ^(+∞)    (dx/(x^2  +ax  +1))  with   ∣a∣<2  2) calculate g(a) =∫_(−∞) ^(+∞)  (x/((x^2  +ax+1)^2 ))  3)find values of integrals ∫_(−∞) ^(+∞)   (dx/(x^2  +(√2)x +1))  and ∫_(−∞) ^(+∞)  (x/((x^2  +(√2)x +1)^2 ))  4) calculate A(θ) = ∫_(−∞) ^(+∞)    (dx/(x^2  +2cosθ +1))  θ is a given real.

1)calculatef(a)=+dxx2+ax+1 witha∣<2 2)calculateg(a)=+x(x2+ax+1)2 3)findvaluesofintegrals+dxx2+2x+1 and+x(x2+2x+1)2 4)calculateA(θ)=+dxx2+2cosθ+1 θisagivenreal.

Commented bymaxmathsup by imad last updated on 03/Feb/19

1) we have f(a) =∫_(−∞) ^(+∞)   (dx/(x^2  +ax +1))  ⇒f(a) =∫_(−∞) ^(+∞)   (dx/(x^2  +2x(a/2) +(a^2 /4)+1−(a^2 /4)))  =∫_(−∞) ^(+∞)     (dx/((x+(a/2))^2  +((4−a^2 )/4)))  =_(x+(a/2)=(1/2)(√(4−a^2 ))t)      ∫_(−∞) ^(+∞)    (1/(((4−a^2 )/4)(1+t^2 ))) (((√(4−a^2 ))dt)/2)  =2(1/(√(4−a^2 ))) ∫_(−∞) ^(+∞)     (dt/(1+t^2 )) =((2π)/(√(4−a^2 ))) ⇒f(a) =((2π)/(√(4−a^2 ))) .  2)we have f^′ (a) =−∫_(−∞) ^(+∞)   ((xdx)/((x^2 +ax+1)^2 )) =−g(a) ⇒  g(a) =−f^′ (a) =−2π ((4−a^2 )^(−(1/2)) )^′ =−2π .(−(1/2))(−2a)(4−a^2 )^(−(3/2))   =−2πa (1/((4−a^2 )(√(4−a^2 )))) =((−2πa)/((4−a^2 )(√(4−a^2 ))))

1)wehavef(a)=+dxx2+ax+1f(a)=+dxx2+2xa2+a24+1a24 =+dx(x+a2)2+4a24=x+a2=124a2t+14a24(1+t2)4a2dt2 =214a2+dt1+t2=2π4a2f(a)=2π4a2. 2)wehavef(a)=+xdx(x2+ax+1)2=g(a) g(a)=f(a)=2π((4a2)12)=2π.(12)(2a)(4a2)32 =2πa1(4a2)4a2=2πa(4a2)4a2

Commented bymaxmathsup by imad last updated on 03/Feb/19

3) ∫_(−∞) ^(+∞)   (dx/(x^2  +(√2)x +1)) =f((√2)) =((2π)/(√(4−2))) =((2π)/(√2)) =π(√2).  ∫_(−∞) ^(+∞)    ((xdx)/((x^2  +(√2)x +1)^2 )) =g((√2)) = ((−2π(√2))/(2(√2))) =−π .

3)+dxx2+2x+1=f(2)=2π42=2π2=π2. +xdx(x2+2x+1)2=g(2)=2π222=π.

Commented bymaxmathsup by imad last updated on 03/Feb/19

4) ∫_(−∞) ^(+∞)   (dx/(x^2  +2cosθ x +1)) =f(2cosθ) = ((2π)/(√(4−4cos^2 θ))) =((2π)/(2(√(1−cos^2 θ)))) =(π/(∣sinθ∣))  ( we suppose here θ ≠ kπ  kfrom Z).

4)+dxx2+2cosθx+1=f(2cosθ)=2π44cos2θ=2π21cos2θ=πsinθ (wesupposehereθkπkfromZ).

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19

2)(1/2)∫((2x+a−a)/((x^2 +ax+1)^2 ))dx  (1/2)∫((d(x^2 +ax+1))/((x^2 +ax+1)^2 ))dx−(a/2)∫(dx/([(x+(a/2))^2 +((√(1−(a^2 /4))) )^2 ]^2 ))  (1/2)×((−1)/((x^2 +ax+1)))−(a/2)I_2   I_2   let (x+(a/2))=(√(1−(a^2 /4))) tanθ=ktanθ  dx=k sec^2 θdθ  so I_2 =∫((ksec^2 θdθ)/([k^2 tan^2 θ+k^2 ]^2 ))  ∫((ksec^2 θ)/(k^4 sec^4 θ))dθ  (1/k^3 )∫(((1+cos2θ)/2))dθ  (1/(2k^3 ))θ+(1/(4k^3 ))sin2θ+c  (1/(2k^3 ))tan^(−1) (((x+(a/2))/k))+(1/(4k^3 ))×((2(((x+(a/2))/k)))/(1+(((x+(a/2))/k))^2 ))+c  so   ((−1)/(2(x^2 +ax+1)))−(a/2)[(1/(2k^3 ))tan^(−1) (((x+(a/2))/k))+(1/(2k^3 ))×(((((x+(a/2))/k)))/(1+(((x+(a/2))/k))^2 ))]  ∣((−1)/(2(x^2 +ax+1)))−(a/(4k^3 ))[tan^(−1) (((x+(a/2))/k))+(((x+(a/2))/k)/(1+(((x+(a/2))/k))^2 ))]∣_(−∞) ^∞   =0−(a/(4k^3 ))[{tan^(−1) (∞)−tan^(−1) (−∞)}+0]  =−(a/(4k^3 ))×(π/1)=((−aπ)/(4(1−(a^2 /4))^(3/2) ))    3)second part =((−(√2) π)/(4(1−(1/2))^(3/2) ))=((−(√2) π)/4)×(√2) ×(√2) ×(√2) =−π answer

2)122x+aa(x2+ax+1)2dx 12d(x2+ax+1)(x2+ax+1)2dxa2dx[(x+a2)2+(1a24)2]2 12×1(x2+ax+1)a2I2 I2let(x+a2)=1a24tanθ=ktanθ dx=ksec2θdθ soI2=ksec2θdθ[k2tan2θ+k2]2 ksec2θk4sec4θdθ 1k3(1+cos2θ2)dθ 12k3θ+14k3sin2θ+c 12k3tan1(x+a2k)+14k3×2(x+a2k)1+(x+a2k)2+c so 12(x2+ax+1)a2[12k3tan1(x+a2k)+12k3×(x+a2k)1+(x+a2k)2] 12(x2+ax+1)a4k3[tan1(x+a2k)+x+a2k1+(x+a2k)2] =0a4k3[{tan1()tan1()}+0] =a4k3×π1=aπ4(1a24)32 3)secondpart=2π4(112)32=2π4×2×2×2=πanswer

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19

1)∫(dx/(x^2 +2x(a/2)+(a^2 /4)+1−(a^2 /4)))dx  ∫(dx/(((√(1−(a^2 /4))) )^2 +(x+(a/2))^2 ))  so answer is  ∣(1/((√(1−(a^2 /4))) ))tan^(−1) (((x+(a/2))/(√(1−(a^2 /4)))))∣_(−∞) ^∞  [(a^2 /4)<1]  =(1/(√(1−(a^2 /4))))×{(π/2)−(−(π/2))}=(π/(√(1−(a^2 /4))))  3)(π/(√(1−(2/4))))=π(√2)

1)dxx2+2xa2+a24+1a24dx dx(1a24)2+(x+a2)2 soansweris 11a24tan1(x+a21a24)[a24<1] =11a24×{π2(π2)}=π1a24 3)π124=π2

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19

4)∫_(−∞) ^∞ (dx/(x^2 +b^2 ))         [[[b^2 =1+2cosθ]  (1/b)∣tan^(−1) ((x/b))∣_(−∞) ^∞   (1/b)[tan^(−1) (∞)−tan^(−1) (−∞)]  =(1/(√(1+2cosθ)))×{(π/2)−((−π)/2)}  =(π/(√(1+2cosθ)))

4)dxx2+b2[[[b2=1+2cosθ] 1btan1(xb) 1b[tan1()tan1()] =11+2cosθ×{π2π2} =π1+2cosθ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com