Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 54741 by gunawan last updated on 10/Feb/19

such that  1. ((n),(0) )^2 + ((n),(1) )^2 +...+ ((n),(n) )^2 =(((2n)!)/((n!)^2 ))  2.  ((n),(0) )+(1/2) ((n),(1) )+...+(1/(n+1)) ((n),(n) )^2 =((2^(n+1) −1)/(n+1))

$$\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{1}.\begin{pmatrix}{\mathrm{n}}\\{\mathrm{0}}\end{pmatrix}^{\mathrm{2}} +\begin{pmatrix}{\mathrm{n}}\\{\mathrm{1}}\end{pmatrix}^{\mathrm{2}} +...+\begin{pmatrix}{\mathrm{n}}\\{\mathrm{n}}\end{pmatrix}^{\mathrm{2}} =\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} } \\ $$$$\mathrm{2}.\:\begin{pmatrix}{\mathrm{n}}\\{\mathrm{0}}\end{pmatrix}+\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{1}}\end{pmatrix}+...+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{n}}\end{pmatrix}^{\mathrm{2}} =\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}} \\ $$

Commented by Abdo msup. last updated on 10/Feb/19

1) we have (1+x)^(2n) =Σ_(k=0) ^n  C_(2n) ^k  x^k   and  (1+x)^(2n) =(1+x)^n (1+x)^n =(Σ_(k=0) ^n  C_n ^k x^k )(Σ_(k=0) ^n  C_n ^k  x^k )  =Σ_(k=0) ^(2n)  c_k  x^(2k)    with c_k =Σ_(i+j =k)  a_i b_j   =Σ_(i=0) ^k  a_i b_(k−i)  =Σ_(i=0) ^k  C_n ^i  C_n ^(k−i)  =Σ_(i=0) ^k (C_n ^i )^2  ⇒  c_n =Σ_(i=0) ^n ( C_n ^i )^2   but c_n  is the coefficient of x^(2n)   in the  expantion of (1+x)^(2n)  ⇒c_n =C_(2n) ^n  =(((2n)!)/((n!)^2 )) ⇒  (C_n ^0 )^2  +(C_n ^1 )^2  +(C_n ^3 )^2  +...+(C_n ^n )^2  =(((2n)!)/((n!)^2 )) .

$$\left.\mathrm{1}\right)\:{we}\:{have}\:\left(\mathrm{1}+{x}\right)^{\mathrm{2}{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{\mathrm{2}{n}} ^{{k}} \:{x}^{{k}} \:\:{and} \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{2}{n}} =\left(\mathrm{1}+{x}\right)^{{n}} \left(\mathrm{1}+{x}\right)^{{n}} =\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} {x}^{{k}} \right)\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{{k}} \right) \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:{c}_{{k}} \:{x}^{\mathrm{2}{k}} \:\:\:{with}\:{c}_{{k}} =\sum_{{i}+{j}\:={k}} \:{a}_{{i}} {b}_{{j}} \\ $$$$=\sum_{{i}=\mathrm{0}} ^{{k}} \:{a}_{{i}} {b}_{{k}−{i}} \:=\sum_{{i}=\mathrm{0}} ^{{k}} \:{C}_{{n}} ^{{i}} \:{C}_{{n}} ^{{k}−{i}} \:=\sum_{{i}=\mathrm{0}} ^{{k}} \left({C}_{{n}} ^{{i}} \right)^{\mathrm{2}} \:\Rightarrow \\ $$$${c}_{{n}} =\sum_{{i}=\mathrm{0}} ^{{n}} \left(\:{C}_{{n}} ^{{i}} \right)^{\mathrm{2}} \:\:{but}\:{c}_{{n}} \:{is}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{2}{n}} \:\:{in}\:{the} \\ $$$${expantion}\:{of}\:\left(\mathrm{1}+{x}\right)^{\mathrm{2}{n}} \:\Rightarrow{c}_{{n}} ={C}_{\mathrm{2}{n}} ^{{n}} \:=\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\left({C}_{{n}} ^{\mathrm{0}} \right)^{\mathrm{2}} \:+\left({C}_{{n}} ^{\mathrm{1}} \right)^{\mathrm{2}} \:+\left({C}_{{n}} ^{\mathrm{3}} \right)^{\mathrm{2}} \:+...+\left({C}_{{n}} ^{{n}} \right)^{\mathrm{2}} \:=\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} }\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19

1)(1+x)^n =nc_0 +nc_1 x+nc_2 x^2 +...+nc_n x^n   (1+(1/x))^n =nc_0 +nc_1 ×(1/x)+nc_2 ×(1/x^2 )+..+nc_n ×(1/x^n )  multiply  right hand side and take x independent  terms..  (nc_0 )^2 +(nc_1 )^2 +(nc_2 )^2 +...+(nc_n )^2   multiply left hand side and take the coefficient  of xindepent terms  (1+x)^n ×(1+(1/x))^n   =(1+x)^n ×(1+x)^n ×(1/x^n )  =x^(−n) (1+x)^(2n)   let( r+1)th term of (1+x)^(2n) contains x^n   t_(r+1) =2nc_r (x)^r   hence x^r =x^n   r=n     t_(n+1) =2nc_n (x)^n  contains x^n   x^(−n) ×2nc_n x^n   =2nc_n →x independendent...  (nc_0 )^2 +(nc_1 )^2 +..(nc_n )^2 =2nc_n =(((2n)!)/(n!×n!))    2)∫_0 ^1 (1+x)^n dx=∫_0 ^1 [nc_0 +nc_1 x+nc_2 x^2 +...+nc_n x^n ]dx  ∣(((1+x)^(n+1) )/(n+1))∣_0 ^1 =∣nc_0 x+(1/2)nc_1 x^2 +(1/3)nc_2 x^3 +..+(1/(n+1))nc_n x^(n+1) ∣_0 ^1   ((2^(n+1) −1)/(n+1))=nc_0 +(1/2)nc_1 +(1/3)nc_2 +...+(1/(n+1))nc_n

$$\left.\mathrm{1}\right)\left(\mathrm{1}+{x}\right)^{{n}} ={nc}_{\mathrm{0}} +{nc}_{\mathrm{1}} {x}+{nc}_{\mathrm{2}} {x}^{\mathrm{2}} +...+{nc}_{{n}} {x}^{{n}} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{n}} ={nc}_{\mathrm{0}} +{nc}_{\mathrm{1}} ×\frac{\mathrm{1}}{{x}}+{nc}_{\mathrm{2}} ×\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+..+{nc}_{{n}} ×\frac{\mathrm{1}}{{x}^{{n}} } \\ $$$${multiply}\:\:{right}\:{hand}\:{side}\:{and}\:{take}\:{x}\:{independent} \\ $$$${terms}.. \\ $$$$\left({nc}_{\mathrm{0}} \right)^{\mathrm{2}} +\left({nc}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({nc}_{\mathrm{2}} \right)^{\mathrm{2}} +...+\left({nc}_{{n}} \right)^{\mathrm{2}} \\ $$$${multiply}\:{left}\:{hand}\:{side}\:{and}\:{take}\:{the}\:{coefficient} \\ $$$${of}\:{xindepent}\:{terms} \\ $$$$\left(\mathrm{1}+{x}\right)^{{n}} ×\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{n}} \\ $$$$=\left(\mathrm{1}+{x}\right)^{{n}} ×\left(\mathrm{1}+{x}\right)^{{n}} ×\frac{\mathrm{1}}{{x}^{{n}} } \\ $$$$={x}^{−{n}} \left(\mathrm{1}+{x}\right)^{\mathrm{2}{n}} \\ $$$${let}\left(\:{r}+\mathrm{1}\right){th}\:{term}\:{of}\:\left(\mathrm{1}+{x}\right)^{\mathrm{2}{n}} {contains}\:{x}^{{n}} \\ $$$${t}_{{r}+\mathrm{1}} =\mathrm{2}{nc}_{{r}} \left({x}\right)^{{r}} \\ $$$${hence}\:{x}^{{r}} ={x}^{{n}} \\ $$$${r}={n}\:\:\: \\ $$$${t}_{{n}+\mathrm{1}} =\mathrm{2}{nc}_{{n}} \left({x}\right)^{{n}} \:{contains}\:{x}^{{n}} \\ $$$$\boldsymbol{{x}}^{−\boldsymbol{{n}}} ×\mathrm{2}\boldsymbol{{nc}}_{\boldsymbol{{n}}} \boldsymbol{{x}}^{\boldsymbol{{n}}} \\ $$$$=\mathrm{2}\boldsymbol{{nc}}_{\boldsymbol{{n}}} \rightarrow{x}\:{independendent}... \\ $$$$\left({nc}_{\mathrm{0}} \right)^{\mathrm{2}} +\left({nc}_{\mathrm{1}} \right)^{\mathrm{2}} +..\left({nc}_{{n}} \right)^{\mathrm{2}} =\mathrm{2}{nc}_{{n}} =\frac{\left(\mathrm{2}{n}\right)!}{{n}!×{n}!} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{x}\right)^{{n}} {dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \left[{nc}_{\mathrm{0}} +{nc}_{\mathrm{1}} {x}+{nc}_{\mathrm{2}} {x}^{\mathrm{2}} +...+{nc}_{{n}} {x}^{{n}} \right]{dx} \\ $$$$\mid\frac{\left(\mathrm{1}+{x}\right)^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\mid_{\mathrm{0}} ^{\mathrm{1}} =\mid{nc}_{\mathrm{0}} {x}+\frac{\mathrm{1}}{\mathrm{2}}{nc}_{\mathrm{1}} {x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}}{nc}_{\mathrm{2}} {x}^{\mathrm{3}} +..+\frac{\mathrm{1}}{{n}+\mathrm{1}}{nc}_{{n}} {x}^{{n}+\mathrm{1}} \mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}}={nc}_{\mathrm{0}} +\frac{\mathrm{1}}{\mathrm{2}}{nc}_{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{3}}{nc}_{\mathrm{2}} +...+\frac{\mathrm{1}}{{n}+\mathrm{1}}{nc}_{{n}} \\ $$

Commented by gunawan last updated on 10/Feb/19

wow thank you very much Sir

$$\mathrm{wow}\:\mathrm{thank}\:{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir} \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19

most welcome...

$${most}\:{welcome}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com