Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 5476 by love math last updated on 15/May/16

∫((2^x 3^x )/(9^x −4^x ))dx    ∫(dx/((1+x)(√x)))

$$\int\frac{\mathrm{2}^{{x}} \mathrm{3}^{{x}} }{\mathrm{9}^{{x}} −\mathrm{4}^{{x}} }{dx} \\ $$$$ \\ $$$$\int\frac{{dx}}{\left(\mathrm{1}+{x}\right)\sqrt{{x}}} \\ $$

Answered by Yozzii last updated on 15/May/16

(2^x /(9^x −4^x ))=(2^x /((3^x +2^x )(3^x −2^x )))  (1/(3^x −2^x ))−(1/(3^x +2^x ))=((3^x +2^x −3^x +2^x )/((3^x −2^x )(3^x +2^x )))=2((2^x /(9^x −4^x )))  ⇒(2^x /(9^x −4^x ))=(1/2)((1/(3^x −2^x ))−(1/(3^x +2^x )))  ∴ I=∫(2^x /(9^x −4^x ))3^x dx=(1/2)∫3^x ((1/(3^x −2^x ))−(1/(3^x +2^x )))dx  I=(1/(2ln(3/2)))∫((((3/2)^x ln(3/2))/(((3/2))^x −1))−(((3/2)^x ln(3/2))/(((3/2))^x +1)))dx  I=(1/(2ln(3/2)))ln∣((3^x −2^x )/(3^x +2^x ))∣+C

$$\frac{\mathrm{2}^{{x}} }{\mathrm{9}^{{x}} −\mathrm{4}^{{x}} }=\frac{\mathrm{2}^{{x}} }{\left(\mathrm{3}^{{x}} +\mathrm{2}^{{x}} \right)\left(\mathrm{3}^{{x}} −\mathrm{2}^{{x}} \right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}^{{x}} −\mathrm{2}^{{x}} }−\frac{\mathrm{1}}{\mathrm{3}^{{x}} +\mathrm{2}^{{x}} }=\frac{\mathrm{3}^{{x}} +\mathrm{2}^{{x}} −\mathrm{3}^{{x}} +\mathrm{2}^{{x}} }{\left(\mathrm{3}^{{x}} −\mathrm{2}^{{x}} \right)\left(\mathrm{3}^{{x}} +\mathrm{2}^{{x}} \right)}=\mathrm{2}\left(\frac{\mathrm{2}^{{x}} }{\mathrm{9}^{{x}} −\mathrm{4}^{{x}} }\right) \\ $$$$\Rightarrow\frac{\mathrm{2}^{{x}} }{\mathrm{9}^{{x}} −\mathrm{4}^{{x}} }=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{3}^{{x}} −\mathrm{2}^{{x}} }−\frac{\mathrm{1}}{\mathrm{3}^{{x}} +\mathrm{2}^{{x}} }\right) \\ $$$$\therefore\:{I}=\int\frac{\mathrm{2}^{{x}} }{\mathrm{9}^{{x}} −\mathrm{4}^{{x}} }\mathrm{3}^{{x}} {dx}=\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{3}^{{x}} \left(\frac{\mathrm{1}}{\mathrm{3}^{{x}} −\mathrm{2}^{{x}} }−\frac{\mathrm{1}}{\mathrm{3}^{{x}} +\mathrm{2}^{{x}} }\right){dx} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}{ln}\left(\mathrm{3}/\mathrm{2}\right)}\int\left(\frac{\left(\mathrm{3}/\mathrm{2}\right)^{{x}} {ln}\left(\mathrm{3}/\mathrm{2}\right)}{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{x}} −\mathrm{1}}−\frac{\left(\mathrm{3}/\mathrm{2}\right)^{{x}} {ln}\left(\mathrm{3}/\mathrm{2}\right)}{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{x}} +\mathrm{1}}\right){dx} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}{ln}\left(\mathrm{3}/\mathrm{2}\right)}{ln}\mid\frac{\mathrm{3}^{{x}} −\mathrm{2}^{{x}} }{\mathrm{3}^{{x}} +\mathrm{2}^{{x}} }\mid+{C} \\ $$

Commented by Yozzii last updated on 15/May/16

Let j=a^x    a>0  ⇒lnj=xlna  By implicit differentiation  ⇒j^(−1) j′=lna⇒(dj/dx)=jlna=a^x lna  ⇒∫((a^x lna)/(qa^x +b))dx=∫(1/(qu+b))du=(1/q)ln∣qu+b∣+C=(1/q)ln∣qa^x +b∣+C where u=a^x .

$${Let}\:{j}={a}^{{x}} \:\:\:{a}>\mathrm{0} \\ $$$$\Rightarrow{lnj}={xlna} \\ $$$${By}\:{implicit}\:{differentiation} \\ $$$$\Rightarrow{j}^{−\mathrm{1}} {j}'={lna}\Rightarrow\frac{{dj}}{{dx}}={jlna}={a}^{{x}} {lna} \\ $$$$\Rightarrow\int\frac{{a}^{{x}} {lna}}{{qa}^{{x}} +{b}}{dx}=\int\frac{\mathrm{1}}{{qu}+{b}}{du}=\frac{\mathrm{1}}{{q}}{ln}\mid{qu}+{b}\mid+{C}=\frac{\mathrm{1}}{{q}}{ln}\mid{qa}^{{x}} +{b}\mid+{C}\:{where}\:{u}={a}^{{x}} . \\ $$

Answered by Yozzii last updated on 15/May/16

x=tan^2 θ⇒dx=2sec^2 θtanθdθ  I=∫(dx/((1+x)(√x)))=∫((2sec^2 θtanθ)/((1+tan^2 θ)tanθ))dθ     (assuming tanθ>0)  I=∫2dθ=2θ+C=2tan^(−1) (√x)+C

$${x}={tan}^{\mathrm{2}} \theta\Rightarrow{dx}=\mathrm{2}{sec}^{\mathrm{2}} \theta{tan}\theta{d}\theta \\ $$$${I}=\int\frac{{dx}}{\left(\mathrm{1}+{x}\right)\sqrt{{x}}}=\int\frac{\mathrm{2}{sec}^{\mathrm{2}} \theta{tan}\theta}{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){tan}\theta}{d}\theta\:\:\:\:\:\left({assuming}\:{tan}\theta>\mathrm{0}\right) \\ $$$${I}=\int\mathrm{2}{d}\theta=\mathrm{2}\theta+{C}=\mathrm{2}{tan}^{−\mathrm{1}} \sqrt{{x}}+{C}\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com