Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 54775 by MJS last updated on 10/Feb/19

found something interesting, it was published  by Tschirnhaus in 1683  we can reduce  x^3 +ax^2 +bx+c=0  (1) to  y^3 +py+q=0  (2) and further to  z^3 =t    (1) is the well known linear substitution  y=x+(a/3) → x=y−(a/3)  ⇒ y^3 −((a^2 −3b)/3)y+((2a^3 −9ab+27c)/(27))=0  p=−((a^2 −3b)/3) and q=((2a^3 −9ab+27c)/(27))  ⇒ y^3 +py+q=0    (2) quadratic substitution  z=y^2 +αy+β → y^2 +αy+(β−z)=0  we could solve this for y and then plug in  above... (Tschirnhaus did) but there′s an  easier way: we calculate the determinant of  the Sylvester Matrix  we have  (a) 1y^3 +0y^2 +py+q=0  (b) 0y^3 +y^2 +αy+(β−z)=0  the matrix is   [(1,0,p,q,0),(0,1,0,p,q),(0,1,α,(β−z),0),(0,0,1,α,(β−z)),(1,α,(β−z),0,0) ]  the determinant is  −z^3     +(3β−2p)z^2     −(pα^2 +3qα+3β^2 −4pβ+p^2 )z    −(qα^3 −pα^2 β−3qαβ+pqα−β^3 +2pβ^2 −p^2 β−q^2 )p  we want the square and the linear terms  to disappear so we set their constants zero  to get α and β  ⇒ β=((2p)/3); α=−((3q)/(2p))±((√(12p^3 +81q^2 ))/(6p))  this leads to  z^3 =((8p^3 )/(27))+((27q^4 )/(2p^3 ))+4q^2 ±((q(√(3(4p^3 +27q^2 )^3 )))/(18p^3 ))  Tschirnhaus thought he could solve polynomes  of any degree with this method but it′s getting  harder to solve because you need a cubic  substitution to eliminate 3 constants and  so on...

$$\mathrm{found}\:\mathrm{something}\:\mathrm{interesting},\:\mathrm{it}\:\mathrm{was}\:\mathrm{published} \\ $$$$\mathrm{by}\:\mathrm{Tschirnhaus}\:\mathrm{in}\:\mathrm{1683} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{reduce} \\ $$$${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{to} \\ $$$${y}^{\mathrm{3}} +{py}+{q}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{and}\:\mathrm{further}\:\mathrm{to} \\ $$$${z}^{\mathrm{3}} ={t} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{well}\:\mathrm{known}\:\mathrm{linear}\:\mathrm{substitution} \\ $$$${y}={x}+\frac{{a}}{\mathrm{3}}\:\rightarrow\:{x}={y}−\frac{{a}}{\mathrm{3}} \\ $$$$\Rightarrow\:{y}^{\mathrm{3}} −\frac{{a}^{\mathrm{2}} −\mathrm{3}{b}}{\mathrm{3}}{y}+\frac{\mathrm{2}{a}^{\mathrm{3}} −\mathrm{9}{ab}+\mathrm{27}{c}}{\mathrm{27}}=\mathrm{0} \\ $$$${p}=−\frac{{a}^{\mathrm{2}} −\mathrm{3}{b}}{\mathrm{3}}\:\mathrm{and}\:{q}=\frac{\mathrm{2}{a}^{\mathrm{3}} −\mathrm{9}{ab}+\mathrm{27}{c}}{\mathrm{27}} \\ $$$$\Rightarrow\:{y}^{\mathrm{3}} +{py}+{q}=\mathrm{0} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\mathrm{quadratic}\:\mathrm{substitution} \\ $$$${z}={y}^{\mathrm{2}} +\alpha{y}+\beta\:\rightarrow\:{y}^{\mathrm{2}} +\alpha{y}+\left(\beta−{z}\right)=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{could}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{for}\:{y}\:\mathrm{and}\:\mathrm{then}\:\mathrm{plug}\:\mathrm{in} \\ $$$$\mathrm{above}...\:\left(\mathrm{Tschirnhaus}\:\mathrm{did}\right)\:\mathrm{but}\:\mathrm{there}'\mathrm{s}\:\mathrm{an} \\ $$$$\mathrm{easier}\:\mathrm{way}:\:\mathrm{we}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{determinant}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{Sylvester}\:\mathrm{Matrix} \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\left({a}\right)\:\mathrm{1}{y}^{\mathrm{3}} +\mathrm{0}{y}^{\mathrm{2}} +{py}+{q}=\mathrm{0} \\ $$$$\left({b}\right)\:\mathrm{0}{y}^{\mathrm{3}} +{y}^{\mathrm{2}} +\alpha{y}+\left(\beta−{z}\right)=\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{matrix}\:\mathrm{is} \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}&{{p}}&{{q}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}&{{p}}&{{q}}\\{\mathrm{0}}&{\mathrm{1}}&{\alpha}&{\beta−{z}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\alpha}&{\beta−{z}}\\{\mathrm{1}}&{\alpha}&{\beta−{z}}&{\mathrm{0}}&{\mathrm{0}}\end{bmatrix} \\ $$$$\mathrm{the}\:\mathrm{determinant}\:\mathrm{is} \\ $$$$−{z}^{\mathrm{3}} \\ $$$$\:\:+\left(\mathrm{3}\beta−\mathrm{2}{p}\right){z}^{\mathrm{2}} \\ $$$$\:\:−\left({p}\alpha^{\mathrm{2}} +\mathrm{3}{q}\alpha+\mathrm{3}\beta^{\mathrm{2}} −\mathrm{4}{p}\beta+{p}^{\mathrm{2}} \right){z} \\ $$$$\:\:−\left({q}\alpha^{\mathrm{3}} −{p}\alpha^{\mathrm{2}} \beta−\mathrm{3}{q}\alpha\beta+{pq}\alpha−\beta^{\mathrm{3}} +\mathrm{2}{p}\beta^{\mathrm{2}} −{p}^{\mathrm{2}} \beta−{q}^{\mathrm{2}} \right){p} \\ $$$$\mathrm{we}\:\mathrm{want}\:\mathrm{the}\:\mathrm{square}\:\mathrm{and}\:\mathrm{the}\:\mathrm{linear}\:\mathrm{terms} \\ $$$$\mathrm{to}\:\mathrm{disappear}\:\mathrm{so}\:\mathrm{we}\:\mathrm{set}\:\mathrm{their}\:\mathrm{constants}\:\mathrm{zero} \\ $$$$\mathrm{to}\:\mathrm{get}\:\alpha\:\mathrm{and}\:\beta \\ $$$$\Rightarrow\:\beta=\frac{\mathrm{2}{p}}{\mathrm{3}};\:\alpha=−\frac{\mathrm{3}{q}}{\mathrm{2}{p}}\pm\frac{\sqrt{\mathrm{12}{p}^{\mathrm{3}} +\mathrm{81}{q}^{\mathrm{2}} }}{\mathrm{6}{p}} \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to} \\ $$$${z}^{\mathrm{3}} =\frac{\mathrm{8}{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{\mathrm{27}{q}^{\mathrm{4}} }{\mathrm{2}{p}^{\mathrm{3}} }+\mathrm{4}{q}^{\mathrm{2}} \pm\frac{{q}\sqrt{\mathrm{3}\left(\mathrm{4}{p}^{\mathrm{3}} +\mathrm{27}{q}^{\mathrm{2}} \right)^{\mathrm{3}} }}{\mathrm{18}{p}^{\mathrm{3}} } \\ $$$$\mathrm{Tschirnhaus}\:\mathrm{thought}\:\mathrm{he}\:\mathrm{could}\:\mathrm{solve}\:\mathrm{polynomes} \\ $$$$\mathrm{of}\:\mathrm{any}\:\mathrm{degree}\:\mathrm{with}\:\mathrm{this}\:\mathrm{method}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{getting} \\ $$$$\mathrm{harder}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{because}\:\mathrm{you}\:\mathrm{need}\:\mathrm{a}\:\mathrm{cubic} \\ $$$$\mathrm{substitution}\:\mathrm{to}\:\mathrm{eliminate}\:\mathrm{3}\:\mathrm{constants}\:\mathrm{and} \\ $$$$\mathrm{so}\:\mathrm{on}... \\ $$

Commented by maxmathsup by imad last updated on 10/Feb/19

thanks sir .

$${thanks}\:{sir}\:. \\ $$

Commented by Tawa1 last updated on 10/Feb/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com