Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 54777 by maxmathsup by imad last updated on 10/Feb/19

let u_n =∫_0 ^∞    ((sin(nx^2 ))/(x^2  +6))dx  1) calculate  u_n    and lim u_n (n→+∞)  2) find nature of Σ u_n    and calaculate it.  3) find nature  of Σ u_n ^2

letun=0sin(nx2)x2+6dx1)calculateunandlimun(n+)2)findnatureofΣunandcalaculateit.3)findnatureofΣun2

Commented by Abdo msup. last updated on 11/Feb/19

1) we have u_n =_(x=(√6)t)  ∫_0 ^∞   ((sin(6nt^2 ))/(6(1+t^2 ))) (√6)dt  =(1/(√6))∫_0 ^∞  ((sin(6nt^2 ))/(1+t^2 )) dt ⇒2u_n =(1/(√6)) ∫_(−∞) ^(+∞)  ((sin(6nt^2 ))/(1+t^2 ))dt  ⇒2(√6)u_n =Im( ∫_(−∞) ^(+∞)  (e^(i6nt^2 ) /(1+t^2 ))dt) let   ϕ(z) =((e^(6inz^2 )   )/(z^2  +1))    the poles of ϕ are i and −i  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Rez(ϕ,i)  Rez(ϕ,i) =lim_(z→i) (z−i)ϕ(z) =(e^(−6ni) /(2i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (e^(−6ni) /(2i)) =π{cos(6n)−i sin(6n)}⇒  2(√6)u_n =−π sin(6n) ⇒u_n =−(π/(2(√6))) sin(6n)  2) the sequence (u_n ) diverges ⇒Σ u_n  diverges  also  u_n ^2  =(π^2 /(24))sin^2 (6n) diverges ⇒Σ u_n ^2  diverges

1)wehaveun=x=6t0sin(6nt2)6(1+t2)6dt=160sin(6nt2)1+t2dt2un=16+sin(6nt2)1+t2dt26un=Im(+ei6nt21+t2dt)letφ(z)=e6inz2z2+1thepolesofφareiandiresidustheoremgive+φ(z)dz=2iπRez(φ,i)Rez(φ,i)=limzi(zi)φ(z)=e6ni2i+φ(z)dz=2iπe6ni2i=π{cos(6n)isin(6n)}26un=πsin(6n)un=π26sin(6n)2)thesequence(un)divergesΣundivergesalsoun2=π224sin2(6n)divergesΣun2diverges

Terms of Service

Privacy Policy

Contact: info@tinkutara.com