Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 54808 by turbo msup by abdo last updated on 11/Feb/19

let p(x)=(1+x^2 )(1+x^4 )...(1+x^2^n  )  with n integr natural  1) find a simple form of p(x)  2) find roots of p(x)and decompose  p(x) inside C[x]  3)calculate ∫_0 ^1  p(x)dx  4) decompose the fraction  F(x)=(1/(p(x))) .

$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)...\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$${with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{roots}\:{of}\:{p}\left({x}\right){and}\:{decompose} \\ $$$${p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{p}\left({x}\right){dx} \\ $$$$\left.\mathrm{4}\right)\:{decompose}\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)}\:. \\ $$

Commented by maxmathsup by imad last updated on 13/Feb/19

1) we can use recurrence to prove that  for x≠+^− 1  P(x) =((1−x^2^(n+1)  )/(1−x^2 ))  2) P(z)=0 ⇔ 1−z^2^(n+1)  =0   ⇔ 1−z^q  =0  with m=2^(n+1)   the roots of   z^m =1 are z_k =e^((i2kπ)/m)   with k  ∈ [[0,m−1]] ⇒z_k =e^((i2kπ)/2^(n+1) )   = e^((ikπ)/2^n )   with k ∈[[0,2^(n+1) −1]]  but  but eliminate values of k /z_k ^2 =1 .

$$\left.\mathrm{1}\right)\:{we}\:{can}\:{use}\:{recurrence}\:{to}\:{prove}\:{that}\:\:{for}\:{x}\neq\overset{−} {+}\mathrm{1} \\ $$$${P}\left({x}\right)\:=\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{P}\left({z}\right)=\mathrm{0}\:\Leftrightarrow\:\mathrm{1}−{z}^{\mathrm{2}^{{n}+\mathrm{1}} } =\mathrm{0}\:\:\:\Leftrightarrow\:\mathrm{1}−{z}^{{q}} \:=\mathrm{0}\:\:{with}\:{m}=\mathrm{2}^{{n}+\mathrm{1}} \:\:{the}\:{roots}\:{of}\: \\ $$$${z}^{{m}} =\mathrm{1}\:{are}\:{z}_{{k}} ={e}^{\frac{{i}\mathrm{2}{k}\pi}{{m}}} \:\:{with}\:{k}\:\:\in\:\left[\left[\mathrm{0},{m}−\mathrm{1}\right]\right]\:\Rightarrow{z}_{{k}} ={e}^{\frac{{i}\mathrm{2}{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }} \:\:=\:{e}^{\frac{{ik}\pi}{\mathrm{2}^{{n}} }} \\ $$$${with}\:{k}\:\in\left[\left[\mathrm{0},\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}\right]\right]\:\:{but}\:\:{but}\:{eliminate}\:{values}\:{of}\:{k}\:/{z}_{{k}} ^{\mathrm{2}} =\mathrm{1}\:. \\ $$

Commented by maxmathsup by imad last updated on 13/Feb/19

P(x) =Π_(k=0_(z_k ≠+^(−1) ) ) ^(2^(n+1) −1) (x−z_k )

$${P}\left({x}\right)\:=\prod_{{k}=\mathrm{0}_{{z}_{{k}} \neq\overset{−\mathrm{1}} {+}} } ^{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}} \left({x}−{z}_{{k}} \right) \\ $$

Answered by mr W last updated on 12/Feb/19

1)  p(x)=(1+x^2 )(1+x^4 )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^2 )(1+x^2 )(1+x^4 )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^4 )(1+x^4 )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^8 )...(1+x^2^n  )  ....  (1−x^2 )p(x)=(1−x^2^n  )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^2^(n+1)  )  ⇒p(x)=((1−x^2^(n+1)  )/(1−x^2 ))

$$\left.\mathrm{1}\right) \\ $$$${p}\left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)...\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){p}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)...\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){p}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{4}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)...\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){p}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{8}} \right)...\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$.... \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){p}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{2}^{{n}} } \right)...\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right) \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){p}\left({x}\right)=\left(\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } \right) \\ $$$$\Rightarrow{p}\left({x}\right)=\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$

Commented by maxmathsup by imad last updated on 12/Feb/19

correct sir but x≠+^− 1

$${correct}\:{sir}\:{but}\:{x}\neq\overset{−} {+}\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com