Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 54830 by maxmathsup by imad last updated on 12/Feb/19

let V_n = ∫_0 ^∞   ((cos(nx))/(n +x^2 ))dx   with n integr nstural not 0 .  1) calculate V_n   2)calculate lim_(n→+∞) nV_n   3) calculate the sum Σ_(n=0) ^∞  V_n

$${let}\:{V}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{{n}\:+{x}^{\mathrm{2}} }{dx}\:\:\:{with}\:{n}\:{integr}\:{nstural}\:{not}\:\mathrm{0}\:. \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{V}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} {nV}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{the}\:{sum}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{V}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 13/Feb/19

1) we have V_n =_(x=(√n)t)      ∫_0 ^∞   ((cos(n(√n)t))/(n(1+t^2 ))) (√n)dt =(1/(√n)) ∫_0 ^∞   ((cos(n(√n)t))/(1+t^2 ))dt ⇒  2(√n)V_n =∫_(−∞) ^(+∞)   ((cos(n(√n)t))/(t^2  +1))dt =Re ( ∫_(−∞) ^(+∞)   (e^(in(√n)t) /(t^2  +1))dt)  let ϕ(z)=(e^(in(√n)z) /(z^2  +1))  the poles of ϕ are i and −i  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) but ϕ(z) =(e^(in(√n)z) /((z−i)(z+i)))  Res(ϕ,i) =lim_(z→i) (z−i)ϕ(z) = (e^(−n(√n)) /(2i)) ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (e^(−n(√n)) /(2i))  =π e^(−n(√n))    ⇒2(√n)V_n =π e^(−n(√n))  ⇒ V_n =(π/(2(√n))) e^(−n(√n))   2) lim_(n→+∞) n V_n =lim_(n→+∞)   (π/2) (√n) e^(−n(√n))   =0

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{V}_{{n}} =_{{x}=\sqrt{{n}}{t}} \:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({n}\sqrt{{n}}{t}\right)}{{n}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:\sqrt{{n}}{dt}\:=\frac{\mathrm{1}}{\sqrt{{n}}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({n}\sqrt{{n}}{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\Rightarrow \\ $$$$\mathrm{2}\sqrt{{n}}{V}_{{n}} =\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({n}\sqrt{{n}}{t}\right)}{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt}\:={Re}\:\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{in}\sqrt{{n}}{t}} }{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt}\right)\:\:{let}\:\varphi\left({z}\right)=\frac{{e}^{{in}\sqrt{{n}}{z}} }{{z}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i}\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\:{but}\:\varphi\left({z}\right)\:=\frac{{e}^{{in}\sqrt{{n}}{z}} }{\left({z}−{i}\right)\left({z}+{i}\right)} \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \left({z}−{i}\right)\varphi\left({z}\right)\:=\:\frac{{e}^{−{n}\sqrt{{n}}} }{\mathrm{2}{i}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{−{n}\sqrt{{n}}} }{\mathrm{2}{i}} \\ $$$$=\pi\:{e}^{−{n}\sqrt{{n}}} \:\:\:\Rightarrow\mathrm{2}\sqrt{{n}}{V}_{{n}} =\pi\:{e}^{−{n}\sqrt{{n}}} \:\Rightarrow\:{V}_{{n}} =\frac{\pi}{\mathrm{2}\sqrt{{n}}}\:{e}^{−{n}\sqrt{{n}}} \\ $$$$\left.\mathrm{2}\right)\:{lim}_{{n}\rightarrow+\infty} {n}\:{V}_{{n}} ={lim}_{{n}\rightarrow+\infty} \:\:\frac{\pi}{\mathrm{2}}\:\sqrt{{n}}\:{e}^{−{n}\sqrt{{n}}} \:\:=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com