Question and Answers Forum

All Questions      Topic List

Oscillation and Waves Questions

Previous in All Question      Next in All Question      

Previous in Oscillation and Waves      Next in Oscillation and Waves      

Question Number 54901 by rahul 19 last updated on 14/Feb/19

Commented by rahul 19 last updated on 14/Feb/19

Ans: (1)!

$${Ans}:\:\left(\mathrm{1}\right)! \\ $$

Answered by mr W last updated on 14/Feb/19

v_0 =velocity of mass m before strike  v_1 =velocity of mass m after strike  u=velocity of mass M after strike  v_0 =u+v_1   mv_0 =−mv_1 +Mu  ⇒mv_0 =−mv_1 +M(v_0 −v_1 )  ⇒(M−m)v_0 =(M+m)v_1   ⇒(v_1 /v_0 )=((M−m)/(M+m))  ((KE_1 )/(KE_0 ))=((v_1 /v_0 ))^2 =((PE_1 )/(PE_0 ))=((l(1−cos θ_1 ))/(l(1−cos θ_0 )))=((2l sin^2  (θ_1 /2))/(2l sin^2  (θ_0 /2)))≈((θ_1 /θ_0 ))^2   ⇒((v_1 /v_0 ))^2 =(((M−m)/(M+m)))^2 ≈((θ_1 /θ_0 ))^2   ⇒((M−m)/(M+m))≈(θ_1 /θ_0 )  ⇒1−((2m)/(M+m))≈(θ_1 /θ_0 )  ((M+m)/(2m))≈(θ_0 /(θ_0 −θ_1 ))  M≈(((2θ_0 )/(θ_0 −θ_1 ))−1)m=(((θ_0 +θ_1 )/(θ_0 −θ_1 )))m  ⇒answer (1)

$${v}_{\mathrm{0}} ={velocity}\:{of}\:{mass}\:{m}\:{before}\:{strike} \\ $$$${v}_{\mathrm{1}} ={velocity}\:{of}\:{mass}\:{m}\:{after}\:{strike} \\ $$$${u}={velocity}\:{of}\:{mass}\:{M}\:{after}\:{strike} \\ $$$${v}_{\mathrm{0}} ={u}+{v}_{\mathrm{1}} \\ $$$${mv}_{\mathrm{0}} =−{mv}_{\mathrm{1}} +{Mu} \\ $$$$\Rightarrow{mv}_{\mathrm{0}} =−{mv}_{\mathrm{1}} +{M}\left({v}_{\mathrm{0}} −{v}_{\mathrm{1}} \right) \\ $$$$\Rightarrow\left({M}−{m}\right){v}_{\mathrm{0}} =\left({M}+{m}\right){v}_{\mathrm{1}} \\ $$$$\Rightarrow\frac{{v}_{\mathrm{1}} }{{v}_{\mathrm{0}} }=\frac{{M}−{m}}{{M}+{m}} \\ $$$$\frac{{KE}_{\mathrm{1}} }{{KE}_{\mathrm{0}} }=\left(\frac{{v}_{\mathrm{1}} }{{v}_{\mathrm{0}} }\right)^{\mathrm{2}} =\frac{{PE}_{\mathrm{1}} }{{PE}_{\mathrm{0}} }=\frac{{l}\left(\mathrm{1}−\mathrm{cos}\:\theta_{\mathrm{1}} \right)}{{l}\left(\mathrm{1}−\mathrm{cos}\:\theta_{\mathrm{0}} \right)}=\frac{\mathrm{2}{l}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta_{\mathrm{1}} }{\mathrm{2}}}{\mathrm{2}{l}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta_{\mathrm{0}} }{\mathrm{2}}}\approx\left(\frac{\theta_{\mathrm{1}} }{\theta_{\mathrm{0}} }\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left(\frac{{v}_{\mathrm{1}} }{{v}_{\mathrm{0}} }\right)^{\mathrm{2}} =\left(\frac{{M}−{m}}{{M}+{m}}\right)^{\mathrm{2}} \approx\left(\frac{\theta_{\mathrm{1}} }{\theta_{\mathrm{0}} }\right)^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{M}−{m}}{{M}+{m}}\approx\frac{\theta_{\mathrm{1}} }{\theta_{\mathrm{0}} } \\ $$$$\Rightarrow\mathrm{1}−\frac{\mathrm{2}{m}}{{M}+{m}}\approx\frac{\theta_{\mathrm{1}} }{\theta_{\mathrm{0}} } \\ $$$$\frac{{M}+{m}}{\mathrm{2}{m}}\approx\frac{\theta_{\mathrm{0}} }{\theta_{\mathrm{0}} −\theta_{\mathrm{1}} } \\ $$$${M}\approx\left(\frac{\mathrm{2}\theta_{\mathrm{0}} }{\theta_{\mathrm{0}} −\theta_{\mathrm{1}} }−\mathrm{1}\right){m}=\left(\frac{\theta_{\mathrm{0}} +\theta_{\mathrm{1}} }{\theta_{\mathrm{0}} −\theta_{\mathrm{1}} }\right){m} \\ $$$$\Rightarrow{answer}\:\left(\mathrm{1}\right) \\ $$

Commented by Otchere Abdullai last updated on 14/Feb/19

Brilliant prof

$${Brilliant}\:{prof} \\ $$

Commented by rahul 19 last updated on 14/Feb/19

In the above Q. if there was no  block of mass M , will θ_0 =θ_1  ?  I mean will string come back to same position  or not?

$${In}\:{the}\:{above}\:{Q}.\:{if}\:{there}\:{was}\:{no} \\ $$$${block}\:{of}\:{mass}\:{M}\:,\:{will}\:\theta_{\mathrm{0}} =\theta_{\mathrm{1}} \:? \\ $$$${I}\:{mean}\:{will}\:{string}\:{come}\:{back}\:{to}\:{same}\:{position} \\ $$$${or}\:{not}? \\ $$

Commented by mr W last updated on 14/Feb/19

certainly. if mass m doesn′t give energy  to an other object, it will come back  to its orginal position, i.e. θ_1 =θ_0 .

$${certainly}.\:{if}\:{mass}\:{m}\:{doesn}'{t}\:{give}\:{energy} \\ $$$${to}\:{an}\:{other}\:{object},\:{it}\:{will}\:{come}\:{back} \\ $$$${to}\:{its}\:{orginal}\:{position},\:{i}.{e}.\:\theta_{\mathrm{1}} =\theta_{\mathrm{0}} . \\ $$

Commented by rahul 19 last updated on 14/Feb/19

We got M= m(((θ_0 +θ_1 )/(θ_0 −θ_1 ))) so When θ_0 =θ_1   M=∞ but you said if M=0 then θ_0 =θ_1  ?   how it is possible?

$${We}\:{got}\:{M}=\:{m}\left(\frac{\theta_{\mathrm{0}} +\theta_{\mathrm{1}} }{\theta_{\mathrm{0}} −\theta_{\mathrm{1}} }\right)\:{so}\:{When}\:\theta_{\mathrm{0}} =\theta_{\mathrm{1}} \\ $$$${M}=\infty\:{but}\:{you}\:{said}\:{if}\:{M}=\mathrm{0}\:{then}\:\theta_{\mathrm{0}} =\theta_{\mathrm{1}} \:? \\ $$$$\:{how}\:{it}\:{is}\:{possible}? \\ $$

Commented by mr W last updated on 14/Feb/19

If M→∞, i.e. M is a wall, the mass m  will get its whole energy back after the  hit against the wall. If M=0, i.e. there  is no collision, the mass m will not  change its motion at all. it will go the  position −θ_0  and then back to θ_0 .

$${If}\:{M}\rightarrow\infty,\:{i}.{e}.\:{M}\:{is}\:{a}\:{wall},\:{the}\:{mass}\:{m} \\ $$$${will}\:{get}\:{its}\:{whole}\:{energy}\:{back}\:{after}\:{the} \\ $$$${hit}\:{against}\:{the}\:{wall}.\:{If}\:{M}=\mathrm{0},\:{i}.{e}.\:{there} \\ $$$${is}\:{no}\:{collision},\:{the}\:{mass}\:{m}\:{will}\:{not} \\ $$$${change}\:{its}\:{motion}\:{at}\:{all}.\:{it}\:{will}\:{go}\:{the} \\ $$$${position}\:−\theta_{\mathrm{0}} \:{and}\:{then}\:{back}\:{to}\:\theta_{\mathrm{0}} . \\ $$

Commented by rahul 19 last updated on 14/Feb/19

Thank you Sir!

$${Thank}\:{you}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com