Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 54966 by Tawa1 last updated on 15/Feb/19

By differentiating   x (√(1 + x))  with respect to x ,  Evaluate,    ∫_( 0) ^( 2)  (x/(√(1 + x)))  dx

$$\mathrm{By}\:\mathrm{differentiating}\:\:\:\mathrm{x}\:\sqrt{\mathrm{1}\:+\:\mathrm{x}}\:\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{x}\:, \\ $$$$\mathrm{Evaluate},\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{2}} \:\frac{\mathrm{x}}{\sqrt{\mathrm{1}\:+\:\mathrm{x}}}\:\:\mathrm{dx} \\ $$

Commented by maxmathsup by imad last updated on 17/Feb/19

we have (x(√(1+x)))^′ =(√(1+x)) +(x/(2(√(1+x)))) ⇒x(√(1+x))= ∫(√(1+x)) +∫ (x/(2(√(1+x))))dx ⇒  ∫  ((xdx)/(2(√(1+x)))) =x(√(1+x))−∫ (√(1+x))dx +c ⇒  ∫_0 ^2   ((xdx)/(2(√(1+x)))) dx =[x(√(1+x))]_0 ^2  −∫_0 ^2 (√(1+x))dx =2(√3)−∫_0 ^2 (√(1+x))dx but  ∫_0 ^2 (√(1+x))dx =∫_0 ^2 (1+x)^(1/2) dx =[(2/3)(1+x)^(3/2) ]_0 ^2  =(2/3)( 3^(3/2)  −1) ⇒  I =2(√3)−(2/3)( (√(27))−1) =2(√3)−(2/3)(3(√3)−1) =2(√3)−2(√3) +(2/3) ⇒I=(2/3) .

$${we}\:{have}\:\left({x}\sqrt{\mathrm{1}+{x}}\right)^{'} =\sqrt{\mathrm{1}+{x}}\:+\frac{{x}}{\mathrm{2}\sqrt{\mathrm{1}+{x}}}\:\Rightarrow{x}\sqrt{\mathrm{1}+{x}}=\:\int\sqrt{\mathrm{1}+{x}}\:+\int\:\frac{{x}}{\mathrm{2}\sqrt{\mathrm{1}+{x}}}{dx}\:\Rightarrow \\ $$$$\int\:\:\frac{{xdx}}{\mathrm{2}\sqrt{\mathrm{1}+{x}}}\:={x}\sqrt{\mathrm{1}+{x}}−\int\:\sqrt{\mathrm{1}+{x}}{dx}\:+{c}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \:\:\frac{{xdx}}{\mathrm{2}\sqrt{\mathrm{1}+{x}}}\:{dx}\:=\left[{x}\sqrt{\mathrm{1}+{x}}\right]_{\mathrm{0}} ^{\mathrm{2}} \:−\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{\mathrm{1}+{x}}{dx}\:=\mathrm{2}\sqrt{\mathrm{3}}−\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{\mathrm{1}+{x}}{dx}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{\mathrm{1}+{x}}{dx}\:=\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx}\:=\left[\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\mathrm{2}} \:=\frac{\mathrm{2}}{\mathrm{3}}\left(\:\mathrm{3}^{\frac{\mathrm{3}}{\mathrm{2}}} \:−\mathrm{1}\right)\:\Rightarrow \\ $$$${I}\:=\mathrm{2}\sqrt{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}\left(\:\sqrt{\mathrm{27}}−\mathrm{1}\right)\:=\mathrm{2}\sqrt{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{1}\right)\:=\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{2}\sqrt{\mathrm{3}}\:+\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow{I}=\frac{\mathrm{2}}{\mathrm{3}}\:. \\ $$

Commented by maxmathsup by imad last updated on 17/Feb/19

(1/2) I =(2/3) ⇒I =(4/3) .

$$\frac{\mathrm{1}}{\mathrm{2}}\:{I}\:=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow{I}\:=\frac{\mathrm{4}}{\mathrm{3}}\:. \\ $$

Commented by Tawa1 last updated on 17/Feb/19

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Answered by mr W last updated on 15/Feb/19

((d(x(√(1+x))))/dx)=(x/(2(√(1+x))))+(√(1+x))  I_1 = ∫_( 0) ^( 2)  (x/(√(1 + x)))  dx  I_2 = ∫_( 0) ^( 2)  (√(1+x)) dx=(2/3)[(1+x)^(3/2) ]_0 ^2 =(2/3)(3(√3)−1)=2(√3)−(2/3)  I=(1/2)I_1 +I_2 = ∫_( 0) ^( 2)  ((x/(2(√(1 + x))))+(√(1+x))) dx=[x(√(1+x))]_0 ^2 =2(√3)  ⇒I_1 =∫_( 0) ^( 2)  (x/(√(1 + x))) dx=2(I_1 −I_2 )=2{2(√3)−(2(√3)−(2/3))}=(4/3)

$$\frac{{d}\left({x}\sqrt{\mathrm{1}+{x}}\right)}{{dx}}=\frac{{x}}{\mathrm{2}\sqrt{\mathrm{1}+{x}}}+\sqrt{\mathrm{1}+{x}} \\ $$$${I}_{\mathrm{1}} =\:\int_{\:\mathrm{0}} ^{\:\mathrm{2}} \:\frac{\mathrm{x}}{\sqrt{\mathrm{1}\:+\:\mathrm{x}}}\:\:\mathrm{dx} \\ $$$${I}_{\mathrm{2}} =\:\int_{\:\mathrm{0}} ^{\:\mathrm{2}} \:\sqrt{\mathrm{1}+{x}}\:\mathrm{dx}=\frac{\mathrm{2}}{\mathrm{3}}\left[\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\mathrm{2}} =\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{1}\right)=\mathrm{2}\sqrt{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}{I}_{\mathrm{1}} +{I}_{\mathrm{2}} =\:\int_{\:\mathrm{0}} ^{\:\mathrm{2}} \:\left(\frac{\mathrm{x}}{\mathrm{2}\sqrt{\mathrm{1}\:+\:\mathrm{x}}}+\sqrt{\mathrm{1}+{x}}\right)\:\mathrm{dx}=\left[{x}\sqrt{\mathrm{1}+{x}}\right]_{\mathrm{0}} ^{\mathrm{2}} =\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$\Rightarrow{I}_{\mathrm{1}} =\int_{\:\mathrm{0}} ^{\:\mathrm{2}} \:\frac{\mathrm{x}}{\sqrt{\mathrm{1}\:+\:\mathrm{x}}}\:\mathrm{dx}=\mathrm{2}\left({I}_{\mathrm{1}} −{I}_{\mathrm{2}} \right)=\mathrm{2}\left\{\mathrm{2}\sqrt{\mathrm{3}}−\left(\mathrm{2}\sqrt{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}\right)\right\}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$

Commented by Tawa1 last updated on 16/Feb/19

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com