Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 54983 by ajfour last updated on 15/Feb/19

Find shortest distance from origin  to the cubic   y=x^3 −10x^2 +27x−18.

$${Find}\:{shortest}\:{distance}\:{from}\:{origin} \\ $$$${to}\:{the}\:{cubic}\:\:\:{y}={x}^{\mathrm{3}} −\mathrm{10}{x}^{\mathrm{2}} +\mathrm{27}{x}−\mathrm{18}. \\ $$

Commented by mr W last updated on 15/Feb/19

you can apply your solution method for  quintic equations to solve this question.

$${you}\:{can}\:{apply}\:{your}\:{solution}\:{method}\:{for} \\ $$$${quintic}\:{equations}\:{to}\:{solve}\:{this}\:{question}.\: \\ $$

Commented by ajfour last updated on 15/Feb/19

it was not general sir, i had  compared coefficients of two  quadratic equations in f.   y=(x^2 +𝛂x+f)(x^3 +Rx^2 +px+q).

$${it}\:{was}\:{not}\:{general}\:{sir},\:{i}\:{had} \\ $$$${compared}\:{coefficients}\:{of}\:{two} \\ $$$${quadratic}\:{equations}\:{in}\:\boldsymbol{{f}}. \\ $$$$\:\boldsymbol{{y}}=\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{\alpha{x}}+\boldsymbol{{f}}\right)\left(\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{Rx}}^{\mathrm{2}} +\boldsymbol{{px}}+\boldsymbol{{q}}\right). \\ $$

Answered by mr W last updated on 16/Feb/19

Commented by mr W last updated on 16/Feb/19

curve y=f(x)  P(x,y)  OP is normal of the curve:  (y/x)=−(1/(y′))  ⇒yy′+x=0  with y=x^3 −10x^2 +27x−18  y′=3x^2 −20x+27  ⇒(x^3 −10x^2 +27x−18)(3x^2 −20x+27)+x=0  ⇒3x^5 −50x^4 +308x^3 −864x^2 +1090x−486=0  ⇒x_(min) ≈0.990296  ⇒y≈−0.0977  ⇒OP_(min) =d_(min) ≈0.9905

$${curve}\:{y}={f}\left({x}\right) \\ $$$${P}\left({x},{y}\right) \\ $$$${OP}\:{is}\:{normal}\:{of}\:{the}\:{curve}: \\ $$$$\frac{{y}}{{x}}=−\frac{\mathrm{1}}{{y}'} \\ $$$$\Rightarrow\boldsymbol{{yy}}'+\boldsymbol{{x}}=\mathrm{0} \\ $$$${with}\:{y}={x}^{\mathrm{3}} −\mathrm{10}{x}^{\mathrm{2}} +\mathrm{27}{x}−\mathrm{18} \\ $$$${y}'=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{20}{x}+\mathrm{27} \\ $$$$\Rightarrow\left({x}^{\mathrm{3}} −\mathrm{10}{x}^{\mathrm{2}} +\mathrm{27}{x}−\mathrm{18}\right)\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{20}{x}+\mathrm{27}\right)+{x}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}{x}^{\mathrm{5}} −\mathrm{50}{x}^{\mathrm{4}} +\mathrm{308}{x}^{\mathrm{3}} −\mathrm{864}{x}^{\mathrm{2}} +\mathrm{1090}{x}−\mathrm{486}=\mathrm{0} \\ $$$$\Rightarrow{x}_{{min}} \approx\mathrm{0}.\mathrm{990296} \\ $$$$\Rightarrow{y}\approx−\mathrm{0}.\mathrm{0977} \\ $$$$\Rightarrow{OP}_{{min}} ={d}_{{min}} \approx\mathrm{0}.\mathrm{9905} \\ $$

Commented by mr W last updated on 16/Feb/19

Commented by mr W last updated on 16/Feb/19

is there a way without solving the  quintic equation?

$${is}\:{there}\:{a}\:{way}\:{without}\:{solving}\:{the} \\ $$$${quintic}\:{equation}? \\ $$

Commented by mr W last updated on 16/Feb/19

D=d^2 =x^2 +y^2   (dD/dx)=2x+2yy′=0  ⇒x+yy′=0⇒this leads to quintic eqn.

$${D}={d}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\frac{{dD}}{{dx}}=\mathrm{2}{x}+\mathrm{2}{yy}'=\mathrm{0} \\ $$$$\Rightarrow\boldsymbol{{x}}+\boldsymbol{{yy}}'=\mathrm{0}\Rightarrow{this}\:{leads}\:{to}\:{quintic}\:{eqn}. \\ $$

Commented by MJS last updated on 16/Feb/19

no Sir.  we can also go this way:  (d/dx)[f(x)^2 +x^2 ]=0  which also leads to a quintic with at least  no easy exact solution

$$\mathrm{no}\:\mathrm{Sir}. \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{also}\:\mathrm{go}\:\mathrm{this}\:\mathrm{way}: \\ $$$$\frac{{d}}{{dx}}\left[{f}\left({x}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\mathrm{which}\:\mathrm{also}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{quintic}\:\mathrm{with}\:\mathrm{at}\:\mathrm{least} \\ $$$$\mathrm{no}\:\mathrm{easy}\:\mathrm{exact}\:\mathrm{solution} \\ $$

Commented by ajfour last updated on 16/Feb/19

Beautiful demonstration Sir,  thanks a lot. i think whatsoever  we do it′ll land on solving a degree 5.

$${Beautiful}\:{demonstration}\:{Sir}, \\ $$$${thanks}\:{a}\:{lot}.\:{i}\:{think}\:{whatsoever} \\ $$$${we}\:{do}\:{it}'{ll}\:{land}\:{on}\:{solving}\:{a}\:{degree}\:\mathrm{5}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com