Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 55039 by behi83417@gmail.com last updated on 16/Feb/19

α and β,are 2 roots of eq:      ax^2 +bx+c=0 with conditions:       { ((α^2 =β+b)),((β^2 =α+a)) :}  find:  c in terms of: a  and  b.

αandβ,are2rootsofeq:ax2+bx+c=0withconditions:{α2=β+bβ2=α+afind:cintermsof:aandb.

Commented by mr W last updated on 17/Feb/19

i think the question has no solution,  because there are too many conditions.    α and β should be roots of ax^2 +bx+c=0,  but they are already given by eqn. system       { ((α^2 =β+b)),((β^2 =α+a)) :}  this is not possible with given a and b as shown below.    α+β=−(b/a)  αβ=(c/a)  on one side:  α^2 +β^2 =α+β+a+b  (α+β)^2 −2αβ=α+β+a+b  (b^2 /a^2 )−((2c)/a)=−(b/a)+(a+b)  b^2 −2ac=−ab+(a+b)a^2   ⇒c=(((b−a^2 )(a+b))/(2a))    ...(i)    but on the other side:  α^2 −β^2 =β−α+a−b  (α−β)(α+β)=β−α+a−b  (α−β)(1+α+β)=a−b  (α−β)(1−(b/a))=a−b  α−β=a  α^2 +β^2 −2αβ=a^2   (b^2 /a^2 )−((2c)/a)=a^2   ((2c)/a)=(b^2 /a^2 )−a^2 =(((b+a^2 )(b−a^2 ))/a^2 )  ⇒c=(((b−a^2 )(a^2 +b))/(2a))    ...(ii)  (i) and (ii) are contradiction.

ithinkthequestionhasnosolution,becausetherearetoomanyconditions.αandβshouldberootsofax2+bx+c=0,buttheyarealreadygivenbyeqn.system{α2=β+bβ2=α+athisisnotpossiblewithgivenaandbasshownbelow.α+β=baαβ=caononeside:α2+β2=α+β+a+b(α+β)22αβ=α+β+a+bb2a22ca=ba+(a+b)b22ac=ab+(a+b)a2c=(ba2)(a+b)2a...(i)butontheotherside:α2β2=βα+ab(αβ)(α+β)=βα+ab(αβ)(1+α+β)=ab(αβ)(1ba)=abαβ=aα2+β22αβ=a2b2a22ca=a22ca=b2a2a2=(b+a2)(ba2)a2c=(ba2)(a2+b)2a...(ii)(i)and(ii)arecontradiction.

Commented by kaivan.ahmadi last updated on 17/Feb/19

hi mr w  please check the proof again  α^2 −β^2 =(β−α)+(b−a)⇒  (α−β)(1+(α+β))=b−a

himrwpleasechecktheproofagainα2β2=(βα)+(ba)(αβ)(1+(α+β))=ba

Commented by mr W last updated on 17/Feb/19

thank you sir! you′re right. i′ve fixed.  please check again.

thankyousir!youreright.ivefixed.pleasecheckagain.

Answered by kaivan.ahmadi last updated on 16/Feb/19

   { ((α^2 −β=b)),((β^2 −α=a)) :}⇒(α^2 +β^2 )−(α+β)=a+b⇒  (α+β)^2 −2αβ−(α+β)=a+b⇒  (((−b)/a))^2 −((2c)/a)−(((−b)/a))=a+b⇒  ((2c)/a)=(b^2 /a^2 )+(b/a)−a−b⇒c=(b^2 /(2a))+(b/2)−(a^2 /2)−((ab)/2)=  ((b^2 +ab−a^3 −a^2 b)/(2a))

{α2β=bβ2α=a(α2+β2)(α+β)=a+b(α+β)22αβ(α+β)=a+b(ba)22ca(ba)=a+b2ca=b2a2+baabc=b22a+b2a22ab2=b2+aba3a2b2a

Terms of Service

Privacy Policy

Contact: info@tinkutara.com