Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 55069 by gunawan last updated on 17/Feb/19

Known analytic function  f(z)=((2(z−2))/(z(z−4)))  and written as f(z)=Σ_(n=0) ^(∝)  a_n (z−1)^n   The value of a_(100)  is...

$$\mathrm{Known}\:\mathrm{analytic}\:\mathrm{function} \\ $$$${f}\left({z}\right)=\frac{\mathrm{2}\left({z}−\mathrm{2}\right)}{{z}\left({z}−\mathrm{4}\right)} \\ $$$$\mathrm{and}\:\mathrm{written}\:\mathrm{as}\:{f}\left({z}\right)=\underset{{n}=\mathrm{0}} {\overset{\propto} {\Sigma}}\:{a}_{{n}} \left({z}−\mathrm{1}\right)^{{n}} \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{a}_{\mathrm{100}} \:\mathrm{is}... \\ $$

Commented by maxmathsup by imad last updated on 17/Feb/19

we have f(z+1) =Σ_(n=0) ^∞ a_n z^n  =g(z)  ⇒taylor serie give a_n =((g^((n)) (0))/(n!))  but g(z)=f(z+1) =((2(z−1))/((z+1)(z−3))) =(a/(z+1)) +(b/(z−3))  a =lim_(z→−1) (z+1)g(z) =((−4)/(−4)) =1  b =lim_(z→3) (z−3)g(z) =(4/4) =1 ⇒g(z)=(1/(z+1)) +(1/(z−3)) ⇒g^((n)) (z)=(((−1)^n n!)/((z+1)^(n+1) )) +(((−1)^n n!)/((z−3)^(n+1) ))  ⇒g^((n)) (0) =(−1)^n n! +(((−1)^n n!)/((−3)^(n+1) )) ⇒a_n =(−1)^n  +(((−1)^n )/((−3)^(n+1) ))  a_n =(−1)^n  −(1/3^(n+1) ) ⇒a_(100)  =1−(1/3^(101) )

$${we}\:{have}\:{f}\left({z}+\mathrm{1}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} {a}_{{n}} {z}^{{n}} \:={g}\left({z}\right)\:\:\Rightarrow{taylor}\:{serie}\:{give}\:{a}_{{n}} =\frac{{g}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!} \\ $$$${but}\:{g}\left({z}\right)={f}\left({z}+\mathrm{1}\right)\:=\frac{\mathrm{2}\left({z}−\mathrm{1}\right)}{\left({z}+\mathrm{1}\right)\left({z}−\mathrm{3}\right)}\:=\frac{{a}}{{z}+\mathrm{1}}\:+\frac{{b}}{{z}−\mathrm{3}} \\ $$$${a}\:={lim}_{{z}\rightarrow−\mathrm{1}} \left({z}+\mathrm{1}\right){g}\left({z}\right)\:=\frac{−\mathrm{4}}{−\mathrm{4}}\:=\mathrm{1} \\ $$$${b}\:={lim}_{{z}\rightarrow\mathrm{3}} \left({z}−\mathrm{3}\right){g}\left({z}\right)\:=\frac{\mathrm{4}}{\mathrm{4}}\:=\mathrm{1}\:\Rightarrow{g}\left({z}\right)=\frac{\mathrm{1}}{{z}+\mathrm{1}}\:+\frac{\mathrm{1}}{{z}−\mathrm{3}}\:\Rightarrow{g}^{\left({n}\right)} \left({z}\right)=\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({z}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:+\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({z}−\mathrm{3}\right)^{{n}+\mathrm{1}} } \\ $$$$\Rightarrow{g}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\left(−\mathrm{1}\right)^{{n}} {n}!\:+\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left(−\mathrm{3}\right)^{{n}+\mathrm{1}} }\:\Rightarrow{a}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \:+\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(−\mathrm{3}\right)^{{n}+\mathrm{1}} } \\ $$$${a}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \:−\frac{\mathrm{1}}{\mathrm{3}^{{n}+\mathrm{1}} }\:\Rightarrow{a}_{\mathrm{100}} \:=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{101}} } \\ $$

Commented by mr W last updated on 17/Feb/19

thanks sir!

$${thanks}\:{sir}! \\ $$

Commented by maxmathsup by imad last updated on 17/Feb/19

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Answered by mr W last updated on 17/Feb/19

f(z)=((2(z−2))/(z(z−4)))=((2[(z−1)−1])/([(z−1)+1][(z−1)−3]))  let t=z−1  f(z)=−((2(t−1))/(3(1+t)(1−(t/3))))  (1/(1+t))=Σ_(k=0) ^∞ (−t)^k =Σ_(k=0) ^∞ (−1)^k t^k   (1/(1−(t/3)))=Σ_(k=9) ^∞ ((t/3))^k =Σ_(k=0) ^∞ (t^k /3^k )  f(z)=−(2/3)(t−1)[Σ_(k=0) ^∞ (−1)^k t^k ][Σ_(k=0) ^∞ (t^k /3^k )]=Σ_(n=0) ^∞ a_n t^n =Σ_(n=0) ^∞ a_n (z−1)^n   a_(100) =−(2/3){Σ_(k=0) ^(99) (((−1)^(99−k) )/3^k )−Σ_(k=0) ^(100) (((−1)^(100−k) )/3^k )}  a_(100) =−(2/3){2Σ_(k=0) ^(99) (((−1)^(99−k) )/3^k )−(1/3^(100) )}  a_(100) =−(2/3){2(−(1/3^0 )+(1/3^1 )−(1/3^2 )+...+(1/3^(99) ))−(1/3^(100) )}  a_(100) =−(2/3){2(−((1−(−(1/3))^(100) )/(1−(−(1/3)))))−(1/3^(100) )}  a_(100) =−(2/3){−(3/2)[1−(1/3^(100) )]−(1/3^(100) )}  a_(100) =−(2/3){−(3/2)+(1/(2×3^(100) ))}  ⇒a_(100) =1−(1/3^(101) )    in general a_n =(−1)^n −(1/3^(n+1) )

$${f}\left({z}\right)=\frac{\mathrm{2}\left({z}−\mathrm{2}\right)}{{z}\left({z}−\mathrm{4}\right)}=\frac{\mathrm{2}\left[\left({z}−\mathrm{1}\right)−\mathrm{1}\right]}{\left[\left({z}−\mathrm{1}\right)+\mathrm{1}\right]\left[\left({z}−\mathrm{1}\right)−\mathrm{3}\right]} \\ $$$${let}\:{t}={z}−\mathrm{1} \\ $$$${f}\left({z}\right)=−\frac{\mathrm{2}\left({t}−\mathrm{1}\right)}{\mathrm{3}\left(\mathrm{1}+{t}\right)\left(\mathrm{1}−\frac{{t}}{\mathrm{3}}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{t}}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−{t}\right)^{{k}} =\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {t}^{{k}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−\frac{{t}}{\mathrm{3}}}=\underset{{k}=\mathrm{9}} {\overset{\infty} {\sum}}\left(\frac{{t}}{\mathrm{3}}\right)^{{k}} =\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{t}^{{k}} }{\mathrm{3}^{{k}} } \\ $$$${f}\left({z}\right)=−\frac{\mathrm{2}}{\mathrm{3}}\left({t}−\mathrm{1}\right)\left[\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {t}^{{k}} \right]\left[\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{t}^{{k}} }{\mathrm{3}^{{k}} }\right]=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{n}} {t}^{{n}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{n}} \left({z}−\mathrm{1}\right)^{{n}} \\ $$$${a}_{\mathrm{100}} =−\frac{\mathrm{2}}{\mathrm{3}}\left\{\underset{{k}=\mathrm{0}} {\overset{\mathrm{99}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{99}−{k}} }{\mathrm{3}^{{k}} }−\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{100}−{k}} }{\mathrm{3}^{{k}} }\right\} \\ $$$${a}_{\mathrm{100}} =−\frac{\mathrm{2}}{\mathrm{3}}\left\{\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{\mathrm{99}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{99}−{k}} }{\mathrm{3}^{{k}} }−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{100}} }\right\} \\ $$$${a}_{\mathrm{100}} =−\frac{\mathrm{2}}{\mathrm{3}}\left\{\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{0}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+...+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{99}} }\right)−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{100}} }\right\} \\ $$$${a}_{\mathrm{100}} =−\frac{\mathrm{2}}{\mathrm{3}}\left\{\mathrm{2}\left(−\frac{\mathrm{1}−\left(−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{100}} }{\mathrm{1}−\left(−\frac{\mathrm{1}}{\mathrm{3}}\right)}\right)−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{100}} }\right\} \\ $$$${a}_{\mathrm{100}} =−\frac{\mathrm{2}}{\mathrm{3}}\left\{−\frac{\mathrm{3}}{\mathrm{2}}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{100}} }\right]−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{100}} }\right\} \\ $$$${a}_{\mathrm{100}} =−\frac{\mathrm{2}}{\mathrm{3}}\left\{−\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}×\mathrm{3}^{\mathrm{100}} }\right\} \\ $$$$\Rightarrow{a}_{\mathrm{100}} =\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{101}} } \\ $$$$ \\ $$$${in}\:{general}\:{a}_{{n}} =\left(−\mathrm{1}\right)^{{n}} −\frac{\mathrm{1}}{\mathrm{3}^{{n}+\mathrm{1}} } \\ $$

Commented by mr W last updated on 17/Feb/19

the other method is using tailor series:  f(x)=Σ_(n=0) ^∞ ((f^((n)) (a))/(n!))(x−a)^n

$${the}\:{other}\:{method}\:{is}\:{using}\:{tailor}\:{series}: \\ $$$${f}\left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{f}^{\left({n}\right)} \left({a}\right)}{{n}!}\left({x}−{a}\right)^{{n}} \\ $$

Commented by mr W last updated on 17/Feb/19

this is the method i know, only using  geometric progression.  please feedback if my answer is correct.

$${this}\:{is}\:{the}\:{method}\:{i}\:{know},\:{only}\:{using} \\ $$$${geometric}\:{progression}. \\ $$$${please}\:{feedback}\:{if}\:{my}\:{answer}\:{is}\:{correct}. \\ $$

Commented by gunawan last updated on 17/Feb/19

Answer is correct Sir  thank you very much  i don′t know orther solution

$$\mathrm{Answer}\:\mathrm{is}\:\mathrm{correct}\:\mathrm{Sir} \\ $$$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much} \\ $$$$\mathrm{i}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{orther}\:\mathrm{solution} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com