Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 55094 by naka3546 last updated on 17/Feb/19

(((1/4) + (1/(16)) + (1/(36)) + (1/(64)) + ...)/(1 + (1/9) + (1/(25)) + (1/(49)) + ...))  =  x  3x^2  + 2x − 1  =  ?

14+116+136+164+...1+19+125+149+...=x3x2+2x1=?

Commented by maxmathsup by imad last updated on 17/Feb/19

we have (1/4) +(1/(16)) +(1/(16)) +...=1+((1/4)) +((1/4))^2  +....−1  =(1/(1−(1/4))) −1 =(4/3)−1 =(1/3)  1+(1/9) +(1/(25)) +(1/(49)) +...=1+((1/3))^2  +((1/5))^2  +((1/7))^2 +... =Σ_(n=0) ^∞  (1/((2n+1)^2 ))  but Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /6) =Σ_(n=1) ^∞  (1/((2n)^2 )) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(1/4)Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 ))  ⇒(1−(1/4))Σ_(n=1) ^∞  (1/n^2 ) =Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒(3/4) (π^2 /6) =Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(π^2 /8)  ⇒ x =((1/3)/(π^2 /8)) =((8π^2 )/3) ⇒  3x^2  +2x−1 =3 (((8π^2 )/3))^2  +2 (((8π^2 )/3))−1 = ((64π^4 )/3) +((16π^2 )/3) −1 .

wehave14+116+116+...=1+(14)+(14)2+....1=11141=431=131+19+125+149+...=1+(13)2+(15)2+(17)2+...=n=01(2n+1)2butn=11n2=π26=n=11(2n)2+n=01(2n+1)2=14n=11n2+n=01(2n+1)2(114)n=11n2=n=01(2n+1)234π26=n=01(2n+1)2n=01(2n+1)2=π28x=13π28=8π233x2+2x1=3(8π23)2+2(8π23)1=64π43+16π231.

Commented by maxmathsup by imad last updated on 17/Feb/19

error from line 6    x =(8/(3π^2 )) ⇒  3x^2  +2x−1 =3 ((8/(3π^2 )))^2  +2 (8/(3π^2 )) −1 =((64)/(3π^4 )) +((16)/(3π^2 )) −1 .

errorfromline6x=83π23x2+2x1=3(83π2)2+283π21=643π4+163π21.

Answered by Joel578 last updated on 17/Feb/19

Answered by tm888 last updated on 18/Feb/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com