Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 5515 by FilupSmith last updated on 17/May/16

If you have a regular n−sided polygon,  is there a method to calculate the area  from one corner to another?    That is, if we start at a corner (corner 1),  and draw a line to corner x, what is the area?  See image in comment for visual representation.

$$\mathrm{If}\:\mathrm{you}\:\mathrm{have}\:\mathrm{a}\:\mathrm{regular}\:{n}−\mathrm{sided}\:\mathrm{polygon}, \\ $$$$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{method}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{area} \\ $$$$\mathrm{from}\:\mathrm{one}\:\mathrm{corner}\:\mathrm{to}\:\mathrm{another}? \\ $$$$ \\ $$$$\mathrm{That}\:\mathrm{is},\:\mathrm{if}\:\mathrm{we}\:\mathrm{start}\:\mathrm{at}\:\mathrm{a}\:\mathrm{corner}\:\left(\mathrm{corner}\:\mathrm{1}\right), \\ $$$$\mathrm{and}\:\mathrm{draw}\:\mathrm{a}\:\mathrm{line}\:\mathrm{to}\:\mathrm{corner}\:{x},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}? \\ $$$$\mathrm{See}\:\mathrm{image}\:\mathrm{in}\:\mathrm{comment}\:\mathrm{for}\:\mathrm{visual}\:\mathrm{representation}. \\ $$

Commented by FilupSmith last updated on 17/May/16

Answered by Rasheed Soomro last updated on 17/May/16

Commented by Rasheed Soomro last updated on 19/May/16

Region ABCDE=Region ABCDEO−▲AEO    In general, if first corner is A_1  and xth corner  (upto wbich area is required and of course   0<x<n for n-gon) is A_x  then,  Region A_1 A_2 ...A_x =Region A_1 A_2 ...A_x O−▲A_1 A_x O  Region A_1 A_2 ...A_n O consists of x−1 isosceles  triangles in general (only in hexagon these triangles  are equilateral).If polygon is n-gon each of these  triangles has ((360)/n) degree angle at centre (O) of   polygon and △A_1 A_x O has (x−1)(((360)/n)) dgree angle  at O.  Let radius of the polygon is r  Each triangle in Region A_1 A_2 ...A_x O has area:  ▲=(1/2)r^2 sin ((360)/n)  Region A_1 A_2 ...A_x O consist of x−1 such triangles  So,          Region A_1 A_2 ...A_x O=(x−1)×(1/2)r^2 sin ((360)/n)                                            =(1/2)r^2 (x−1) sin ((360)/n)  And now ▲A_1 A_x O=(1/2)r^2  sin ((360(x−1))/n)  So finally  Region A_1 A_2 ...A_x =Region A_1 A_2 ...A_x O−▲A_1 A_x O                         =(1/2)r^2 (x−1) sin ((360)/n)−(1/2)r^2  sin ((360(x−1))/n)           =  (1/2)r^2  [(x−1) sin ((360)/n)−sin ((360(x−1))/n)]

$$\mathrm{Region}\:\mathrm{ABCDE}=\mathrm{Region}\:\mathrm{ABCDEO}−\blacktriangle\mathrm{AEO} \\ $$$$ \\ $$$$\mathrm{In}\:\mathrm{general},\:\mathrm{if}\:\mathrm{first}\:\mathrm{corner}\:\mathrm{is}\:\mathrm{A}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{xth}\:\mathrm{corner} \\ $$$$\left(\mathrm{upto}\:\mathrm{wbich}\:\mathrm{area}\:\mathrm{is}\:\mathrm{required}\:\mathrm{and}\:\mathrm{of}\:\mathrm{course}\:\right. \\ $$$$\left.\mathrm{0}<\mathrm{x}<\mathrm{n}\:\mathrm{for}\:\mathrm{n}-\mathrm{gon}\right)\:\mathrm{is}\:\mathrm{A}_{\mathrm{x}} \:\mathrm{then}, \\ $$$$\mathrm{Region}\:\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{2}} ...\mathrm{A}_{\mathrm{x}} =\mathrm{Region}\:\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{2}} ...\mathrm{A}_{\mathrm{x}} \mathrm{O}−\blacktriangle\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{x}} \mathrm{O} \\ $$$$\mathrm{Region}\:\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{2}} ...\mathrm{A}_{\mathrm{n}} \mathrm{O}\:\mathrm{consists}\:\mathrm{of}\:\mathrm{x}−\mathrm{1}\:\mathrm{isosceles} \\ $$$$\mathrm{triangles}\:\mathrm{in}\:\mathrm{general}\:\left(\mathrm{only}\:\mathrm{in}\:\mathrm{hexagon}\:\mathrm{these}\:\mathrm{triangles}\right. \\ $$$$\left.\mathrm{are}\:\mathrm{equilateral}\right).\mathrm{If}\:\mathrm{polygon}\:\mathrm{is}\:\mathrm{n}-\mathrm{gon}\:\mathrm{each}\:\mathrm{of}\:\mathrm{these} \\ $$$$\mathrm{triangles}\:\mathrm{has}\:\frac{\mathrm{360}}{\mathrm{n}}\:\mathrm{degree}\:\mathrm{angle}\:\mathrm{at}\:\mathrm{centre}\:\left(\mathrm{O}\right)\:\mathrm{of}\: \\ $$$$\mathrm{polygon}\:\mathrm{and}\:\bigtriangleup\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{x}} \mathrm{O}\:\mathrm{has}\:\left(\mathrm{x}−\mathrm{1}\right)\left(\frac{\mathrm{360}}{\mathrm{n}}\right)\:\mathrm{dgree}\:\mathrm{angle} \\ $$$$\mathrm{at}\:\mathrm{O}. \\ $$$$\mathrm{Let}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polygon}\:\mathrm{is}\:\mathrm{r} \\ $$$$\mathrm{Each}\:\mathrm{triangle}\:\mathrm{in}\:\mathrm{Region}\:\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{2}} ...\mathrm{A}_{\mathrm{x}} \mathrm{O}\:\mathrm{has}\:\mathrm{area}: \\ $$$$\blacktriangle=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{r}^{\mathrm{2}} \mathrm{sin}\:\frac{\mathrm{360}}{\mathrm{n}} \\ $$$$\mathrm{Region}\:\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{2}} ...\mathrm{A}_{\mathrm{x}} \mathrm{O}\:\mathrm{consist}\:\mathrm{of}\:\mathrm{x}−\mathrm{1}\:\mathrm{such}\:\mathrm{triangles} \\ $$$$\mathrm{So}, \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Region}\:\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{2}} ...\mathrm{A}_{\mathrm{x}} \mathrm{O}=\left(\mathrm{x}−\mathrm{1}\right)×\frac{\mathrm{1}}{\mathrm{2}}\mathrm{r}^{\mathrm{2}} \mathrm{sin}\:\frac{\mathrm{360}}{\mathrm{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{r}^{\mathrm{2}} \left(\mathrm{x}−\mathrm{1}\right)\:\mathrm{sin}\:\frac{\mathrm{360}}{\mathrm{n}} \\ $$$$\mathrm{And}\:\mathrm{now}\:\blacktriangle\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{x}} \mathrm{O}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{r}^{\mathrm{2}} \:\mathrm{sin}\:\frac{\mathrm{360}\left(\mathrm{x}−\mathrm{1}\right)}{\mathrm{n}} \\ $$$$\mathrm{So}\:\mathrm{finally} \\ $$$$\mathrm{Region}\:\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{2}} ...\mathrm{A}_{\mathrm{x}} =\mathrm{Region}\:\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{2}} ...\mathrm{A}_{\mathrm{x}} \mathrm{O}−\blacktriangle\mathrm{A}_{\mathrm{1}} \mathrm{A}_{\mathrm{x}} \mathrm{O} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{r}^{\mathrm{2}} \left(\mathrm{x}−\mathrm{1}\right)\:\mathrm{sin}\:\frac{\mathrm{360}}{\mathrm{n}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{r}^{\mathrm{2}} \:\mathrm{sin}\:\frac{\mathrm{360}\left(\mathrm{x}−\mathrm{1}\right)}{\mathrm{n}} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{r}^{\mathrm{2}} \:\left[\left(\mathrm{x}−\mathrm{1}\right)\:\mathrm{sin}\:\frac{\mathrm{360}}{\mathrm{n}}−\mathrm{sin}\:\frac{\mathrm{360}\left(\mathrm{x}−\mathrm{1}\right)}{\mathrm{n}}\right] \\ $$$$ \\ $$

Commented by FilupSmith last updated on 17/May/16

Very clever!!! thanks!

$$\mathrm{Very}\:\mathrm{clever}!!!\:\mathrm{thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com