All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 55190 by Tawa1 last updated on 19/Feb/19
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Feb/19
0=usinα−gT10=usinβ−gT2usinαusinβ=gT1gT2T1T2=sinαsinβ....(1)x=(ucosα)t1y=(usinα)t1−12gt12commonpointso(x,y)identicalfortwoparticlex=(ucosβ)t2y=(usinβ)t2−12gt22(ucosα)t1=(ucosβ)t2cosαcosβ=t2t1t1cosβ=t2cosα=k(say)(usinα)t1−12gt12=(usinβ)t2−12gt22usinα×kcosβ−usinβ×kcosα=g2(kcosβ+kcosα)(kcosβ−kcosα)uksin(α−β)=g2×k2×[2cos(α+β2)cos(α−β2)×2sin(α+β2)sin(α−β2)eliminatingsin(α−β)frombothside..u=gk2×sin(α+β)k=2ugsin(α+β)....(2)t1=2ucosβgsin(α+β)t2=2ucosαgsin(α+β)LHST1t1+T2t2=usinαg×2ucosβgsin(α+β)+usinβg×2ucosαgsin(α+β)2u2g2sin(α+β)×[sinαcosβ+cosαsinβ]2u2g2×sin(α+β)sin(α+β)=2u2g2...proved....
Commented by Tawa1 last updated on 19/Feb/19
Godblessyousir.Ireallyappreciateyoureffort
Commented by Tawa1 last updated on 23/Feb/19
Sir,idon′tunderstandhowyoueliminatesin(α−β)sir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com