Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55223 by peter frank last updated on 19/Feb/19

Commented by maxmathsup by imad last updated on 19/Feb/19

∫_0 ^1   (dx/x^x ) =∫_0 ^1  x^(−x) dx =∫_0 ^1  e^(−xln(x)) dx =∫_0 ^1 (Σ_(n=0) ^∞  (((−xln(x))^n )/(n!)))dx  =Σ_(n=0) ^∞  (((−1)^n )/(n!)) ∫_0 ^1   x^n (ln(x))^n  dx   let A_n =∫_0 ^1 x^n (lnx)^n  dx  A_n =_(ln(x)=−t)    −  ∫_0 ^(+∞)  (−t)^n    e^(−nt)   (−e^(−t) )dt =(−1)^n ∫_0 ^(+∞)   t^n  e^(−(n+1)t) dt  =_((n+1)t =u)    (−1)^n  ∫_0 ^∞   (u^n /((n+1)^n )) e^(−u)  (du/((n+1))) =(((−1)^n )/((n+1)^(n+1) )) ∫_0 ^∞  u^n  e^(−u)  du   we have Γ(x) =∫_0 ^∞  t^(x−1) e^(−t)  dt ⇒Γ(n+1) =∫_0 ^∞  ∫_0 ^∞  t^n  e^(−t) dt =n! ⇒  A_n =(((−1)^n n!)/((n+1)^(n+1) ))  ⇒∫_0 ^1   (dx/x^x ) =Σ_(n=0) ^∞  (((−1)^n )/(n!)) (((−1)^n n!)/((n+1)^(n+1) ))  =Σ_(n=0) ^∞   (1/((n+1)^(n+1) )) =Σ_(n=1) ^∞  (1/n^n ) =(1/1^1 ) +(1/2^2 ) + (1/3^3 ) +....

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{x}^{{x}} }\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{−{x}} {dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{xln}\left({x}\right)} {dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−{xln}\left({x}\right)\right)^{{n}} }{{n}!}\right){dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}} }{\boldsymbol{{n}}!}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} \left({ln}\left({x}\right)\right)^{{n}} \:{dx}\:\:\:{let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left({lnx}\right)^{{n}} \:{dx} \\ $$$${A}_{{n}} =_{{ln}\left({x}\right)=−{t}} \:\:\:−\:\:\int_{\mathrm{0}} ^{+\infty} \:\left(−{t}\right)^{{n}} \:\:\:{e}^{−{nt}} \:\:\left(−{e}^{−{t}} \right){dt}\:=\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{+\infty} \:\:{t}^{{n}} \:{e}^{−\left({n}+\mathrm{1}\right){t}} {dt} \\ $$$$=_{\left({n}+\mathrm{1}\right){t}\:={u}} \:\:\:\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{u}^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}} }\:{e}^{−{u}} \:\frac{{du}}{\left({n}+\mathrm{1}\right)}\:=\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:\int_{\mathrm{0}} ^{\infty} \:{u}^{{n}} \:{e}^{−{u}} \:{du} \\ $$$$\:{we}\:{have}\:\Gamma\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} {e}^{−{t}} \:{dt}\:\Rightarrow\Gamma\left({n}+\mathrm{1}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} \:{e}^{−{t}} {dt}\:={n}!\:\Rightarrow \\ $$$${A}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{{x}^{{x}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} } \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{n}} }\:=\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{1}} }\:+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\:+.... \\ $$

Commented by maxmathsup by imad last updated on 19/Feb/19

error of typing    Γ(n+1) =∫_0 ^∞ t^n  e^(−t) dt =n!

$${error}\:{of}\:{typing}\:\:\:\:\Gamma\left({n}+\mathrm{1}\right)\:=\int_{\mathrm{0}} ^{\infty} {t}^{{n}} \:{e}^{−{t}} {dt}\:={n}! \\ $$

Commented by peter frank last updated on 19/Feb/19

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by peter frank last updated on 20/Feb/19

sorry sir how did u get   that lnx=−t when x→0  t→0 and x→1 t→+∝

$$\mathrm{sorry}\:\mathrm{sir}\:\mathrm{how}\:\mathrm{did}\:\mathrm{u}\:\mathrm{get}\: \\ $$$$\mathrm{that}\:\mathrm{lnx}=−\mathrm{t}\:\mathrm{when}\:\mathrm{x}\rightarrow\mathrm{0} \\ $$$$\mathrm{t}\rightarrow\mathrm{0}\:\mathrm{and}\:\mathrm{x}\rightarrow\mathrm{1}\:\mathrm{t}\rightarrow+\propto \\ $$

Commented by maxmathsup by imad last updated on 24/Feb/19

no sir with changement ln(x)=−t   so if x→0^+   ln(x) →−∞ ⇒−t→−∞ ⇒  t→+∞  be carreful sir ...

$${no}\:{sir}\:{with}\:{changement}\:{ln}\left({x}\right)=−{t}\:\:\:{so}\:{if}\:{x}\rightarrow\mathrm{0}^{+} \:\:{ln}\left({x}\right)\:\rightarrow−\infty\:\Rightarrow−{t}\rightarrow−\infty\:\Rightarrow \\ $$$${t}\rightarrow+\infty\:\:{be}\:{carreful}\:{sir}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com