Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55229 by maxmathsup by imad last updated on 19/Feb/19

calculate lim_(n→+∞)  ∫_0 ^n   (e^(nx) /(1+nx^2 )) dx  .

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{{n}} \:\:\frac{{e}^{{nx}} }{\mathrm{1}+{nx}^{\mathrm{2}} }\:{dx}\:\:. \\ $$

Commented by maxmathsup by imad last updated on 25/Feb/19

 let I_n =∫_0 ^n   (e^(nx) /(1+nx^2 )) dx  we have 1+nx^2 ≤n(1+x^2 ) ⇒(1/(1+nx^2 )) ≥(1/(n(1+x^2 ))) ⇒  (e^(nx) /(1+nx^2 )) ≥ (e^(nx) /(n(1+x^2 ))) ⇒ I_n  ≥(1/n) ∫_0 ^n   (e^(nx) /(1+x^2 ))dx  but  e^(nx)  =Σ_(p=0) ^∞  (((nx)^p )/(p!)) ⇒ (e^(nx) /(1+x^2 )) =Σ_(p=0) ^∞  ((n^p  x^p )/(p!(1+x^2 ))) ⇒(1/n)∫_0 ^n  (e^(nx) /(1+x^2 )) dx  =(1/n)Σ_(p=0) ^∞  n^p  ∫_0 ^n  (x^p /(p!(1+x^2 )))dx =∫_0 ^n  (dx/(1+x^2 )) +Σ_(p=1) ^∞  n^(p−1)  ∫_0 ^n  (x^p /(p!(1+x^2 )))dx ⇒  lim_(n→+∞)  (1/n) ∫_0 ^n  (e^(nx) /(1+x^2 ))dx =+∞ ⇒ lim_(n→+∞)  I_n = +∞ .

$$\:{let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{{n}} \:\:\frac{{e}^{{nx}} }{\mathrm{1}+{nx}^{\mathrm{2}} }\:{dx}\:\:{we}\:{have}\:\mathrm{1}+{nx}^{\mathrm{2}} \leqslant{n}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:\Rightarrow\frac{\mathrm{1}}{\mathrm{1}+{nx}^{\mathrm{2}} }\:\geqslant\frac{\mathrm{1}}{{n}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:\Rightarrow \\ $$$$\frac{{e}^{{nx}} }{\mathrm{1}+{nx}^{\mathrm{2}} }\:\geqslant\:\frac{{e}^{{nx}} }{{n}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:\Rightarrow\:{I}_{{n}} \:\geqslant\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{{n}} \:\:\frac{{e}^{{nx}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:{but} \\ $$$${e}^{{nx}} \:=\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\left({nx}\right)^{{p}} }{{p}!}\:\Rightarrow\:\frac{{e}^{{nx}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:=\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{{n}^{{p}} \:{x}^{{p}} }{{p}!\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:\Rightarrow\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{{n}} \:\frac{{e}^{{nx}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$$$=\frac{\mathrm{1}}{{n}}\sum_{{p}=\mathrm{0}} ^{\infty} \:{n}^{{p}} \:\int_{\mathrm{0}} ^{{n}} \:\frac{{x}^{{p}} }{{p}!\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:=\int_{\mathrm{0}} ^{{n}} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:+\sum_{{p}=\mathrm{1}} ^{\infty} \:{n}^{{p}−\mathrm{1}} \:\int_{\mathrm{0}} ^{{n}} \:\frac{{x}^{{p}} }{{p}!\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{{n}} \:\frac{{e}^{{nx}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=+\infty\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} =\:+\infty\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com