Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55230 by maxmathsup by imad last updated on 19/Feb/19

calculate lim_(ξ→0)      ∫_1 ^(1+ξ)     ((arctan(ξt))/t) dt .

calculatelimξ011+ξarctan(ξt)tdt.

Commented by maxmathsup by imad last updated on 25/Feb/19

∃ α ∈]1,1+ξ[ /A(ξ)= ∫_1 ^(1+ξ)  ((arctan(ξt))/t) dt = arctan(ξα) ∫_1 ^(1+ξ)  (dt/t)  =arctan(ξα) ln∣1+ξ∣   ⇒lim_(ξ→0) A(ξ)=arctan(0)ln(1)=0 ⇒  lim_(ξ→0)   ∫_1 ^(1+ξ)   ((arctan(ξt))/t) dt =0 .

α]1,1+ξ[/A(ξ)=11+ξarctan(ξt)tdt=arctan(ξα)11+ξdtt=arctan(ξα)ln1+ξlimξ0A(ξ)=arctan(0)ln(1)=0limξ011+ξarctan(ξt)tdt=0.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com