Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55237 by peter frank last updated on 19/Feb/19

∫_0 ^3 ∫_1 ^2 (x^3 +y^2 )dxdy

0312(x3+y2)dxdy

Commented by Abdo msup. last updated on 20/Feb/19

I =∫_0 ^3  A(y)dy with A(y)=∫_1 ^2 (x^3  +y^2 )dx  =∫_1 ^2  x^3 dx +y^2  ∫_1 ^2 dx =[(x^4 /4)]_1 ^2  +y^2   =(1/4)( 2^4 −1) +y^2  =((15)/4) +y^2  ⇒  I =∫_0 ^3  (((15)/4)+y^2 )dy =((45)/4) +[(1/3)y^3 ]_0 ^3   =((45)/4) +9 =((45+36)/4) =((81)/4)

I=03A(y)dywithA(y)=12(x3+y2)dx=12x3dx+y212dx=[x44]12+y2=14(241)+y2=154+y2I=03(154+y2)dy=454+[13y3]03=454+9=45+364=814

Answered by kaivan.ahmadi last updated on 20/Feb/19

∫_0 ^3 ((x^4 /4)+y^2 x]_1 ^2 )dy=∫_0 ^3 (4+2y^2 −(1/4)−y^2 )dy=  ∫_0 ^3 (y^2 +((15)/4))dy=(y^3 /3)+((15)/4)y]_0 ^3 =9+((45)/4)=((81)/4)

03(x44+y2x]12)dy=03(4+2y214y2)dy=03(y2+154)dy=y33+154y]03=9+454=814

Terms of Service

Privacy Policy

Contact: info@tinkutara.com