All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 55267 by maxmathsup by imad last updated on 25/Feb/19
1)calculatef(x)=∫0π4ln(1+xtanθ)dθ2)findthevaluesofintegrals∫0π4ln(1+tanθ)and∫0π4ln(1+2tanθ)dθ.1)wehavef′(x)=∫0π4tanθ1+xtanθdθ=∫0π4sinθcosθ1+xsinθcosθdθ=∫0π4sinθcosθ+xsinθdθ=tan(θ2)=t∫02−12t1+t21−t21+t2+2xt1+t22dt1+t2=∫02−14t(1+t2)(1−t2+2xt)dt=−∫02−14t(t2+1)(t2−2xt−1)dtletdecomposeF(t)=4t(t2+1)(t2−2xt−1)rootsoft2−2xt−1Δ′=x2+1⇒t1=x+x2+1andt2=x−x2+1F(t)=at−t1+bt−t2+ct+dt2+1a=limt→t1(t−t1)F(t)=4t1(t12+1)(t1−t2)=αb=limt→t2(t−t2)F(t)=4t2(t22+1)(t2−t1)=β⇒F(t)=αt−t1+βt−t2+ct+dt2+1F(0)=0=−αt1−βt2+d⇒d=αt1+βt2F(1)=2−2x=−1x=α1−t1+β1−t2+c+d2⇒1x=αt1−1+βt2−1−c2−d2⇒c2=αt1−1+βt2−1−d2−1x⇒c=2αt1−1+2βt2−1−d−2x∫F(t)dt=αln∣t−t1∣+βln∣t−t2∣+c2ln(t2+1)+darctan(t)⇒∫02−1F(t)dt=[αln∣t−t1∣+βln∣t−t2∣+c2ln(t2+1)]02−1=αln∣2−1−t1∣+βln∣2−1−t2∣+c2ln(4−22)=αln∣2−1−x−1+x2)+βln∣2−1−x+1+x2)+ln(4−22)2c=f′(x)⇒f(x)=∫αln∣2−1−x−1+x2∣)dx+β∫ln∣2−1+1+x2∣dx+cx2ln(4−22)+C....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com