Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55267 by maxmathsup by imad last updated on 25/Feb/19

1) calculate f(x)=∫_0 ^(π/4)  ln(1+xtanθ)dθ  2) find the values of integrals ∫_0 ^(π/4)  ln(1+tanθ)  and ∫_0 ^(π/4) ln(1+2tanθ)dθ .  1) we have f^′ (x)=∫_0 ^(π/4)    ((tanθ)/(1+xtanθ)) dθ =∫_0 ^(π/4)    (((sinθ)/(cosθ))/(1+x((sinθ)/(cosθ))))dθ  =∫_0 ^(π/4)   ((sinθ)/(cosθ +xsinθ)) dθ  =_(tan((θ/2))=t)      ∫_0 ^((√2)−1)     (((2t)/(1+t^2 ))/(((1−t^2 )/(1+t^2 )) +((2xt)/(1+t^2 )))) ((2dt)/(1+t^2 ))  =∫_0 ^((√2)−1)      ((4t)/((1+t^2 )(1−t^2  +2xt)))dt =−∫_0 ^((√2)−1)     ((4t)/((t^2 +1)(t^2 −2xt −1)))dt let decompose  F(t) = ((4t)/((t^2 +1)(t^2 −2xt −1)))  roots of  t^2 −2xt −1  Δ^′ =x^2 +1 ⇒t_1 =x+(√(x^2 +1)) and t_2 =x−(√(x^2  +1))  F(t)=(a/(t−t_1 )) +(b/(t−t_2 )) +((ct +d)/(t^2  +1))  a =lim_(t→t_1 ) (t−t_1 )F(t)=((4t_1 )/((t_1 ^2 +1)(t_1 −t_2 ))) =α  b =lim_(t→t_2 ) (t−t_2 )F(t) =((4t_2 )/((t_2 ^2  +1)(t_2 −t_1 ))) =β ⇒F(t)=(α/(t−t_1 )) +(β/(t−t_2 )) +((ct +d)/(t^2  +1))  F(0) =0=−(α/t_1 ) −(β/t_2 ) +d  ⇒d =(α/t_1 ) +(β/t_2 )  F(1)=(2/(−2x)) =−(1/x)=(α/(1−t_1 )) +(β/(1−t_2 )) +((c+d)/2) ⇒(1/x) =(α/(t_1 −1)) +(β/(t_2 −1)) −(c/2) −(d/2)  ⇒(c/2) =(α/(t_1 −1)) +(β/(t_2 −1)) −(d/2) −(1/x) ⇒c =((2α)/(t_1 −1)) +((2β)/(t_2 −1)) −d−(2/x)  ∫ F(t)dt =αln∣t−t_1 ∣ +βln∣t−t_2 ∣ +(c/2)ln(t^2  +1) +d arctan(t) ⇒  ∫_0 ^((√2)−1) F(t)dt =[αln∣t−t_1 ∣+βln∣t−t_2 ∣ +(c/2)ln(t^2  +1)]_0 ^((√2)−1)   =αln∣(√2)−1−t_1 ∣ +βln∣(√2)−1−t_2 ∣ +(c/2)ln(4−2(√2))   =αln∣(√2)−1−x−(√(1+x^2 )))+βln∣(√2)−1−x+(√(1+x^2 ))) +((ln(4−2(√2)))/2)c =f^′ (x) ⇒  f(x)=∫ αln∣(√2)−1−x−(√(1+x^2 ))∣)dx+β∫ ln∣(√2)−1+(√(1+x^2 ))∣dx  +((cx)/2)ln(4−2(√2)) +C ....be continued...

1)calculatef(x)=0π4ln(1+xtanθ)dθ2)findthevaluesofintegrals0π4ln(1+tanθ)and0π4ln(1+2tanθ)dθ.1)wehavef(x)=0π4tanθ1+xtanθdθ=0π4sinθcosθ1+xsinθcosθdθ=0π4sinθcosθ+xsinθdθ=tan(θ2)=t0212t1+t21t21+t2+2xt1+t22dt1+t2=0214t(1+t2)(1t2+2xt)dt=0214t(t2+1)(t22xt1)dtletdecomposeF(t)=4t(t2+1)(t22xt1)rootsoft22xt1Δ=x2+1t1=x+x2+1andt2=xx2+1F(t)=att1+btt2+ct+dt2+1a=limtt1(tt1)F(t)=4t1(t12+1)(t1t2)=αb=limtt2(tt2)F(t)=4t2(t22+1)(t2t1)=βF(t)=αtt1+βtt2+ct+dt2+1F(0)=0=αt1βt2+dd=αt1+βt2F(1)=22x=1x=α1t1+β1t2+c+d21x=αt11+βt21c2d2c2=αt11+βt21d21xc=2αt11+2βt21d2xF(t)dt=αlntt1+βlntt2+c2ln(t2+1)+darctan(t)021F(t)dt=[αlntt1+βlntt2+c2ln(t2+1)]021=αln21t1+βln21t2+c2ln(422)=αln21x1+x2)+βln21x+1+x2)+ln(422)2c=f(x)f(x)=αln21x1+x2)dx+βln21+1+x2dx+cx2ln(422)+C....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com