Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 55269 by maxmathsup by imad last updated on 20/Feb/19

let f(x) =(2x+1)ln(1−x^2 )  1) calculate f^((n)) (x) and f^((n)) (0)  2)developp f at integr serie.  3) calculate ∫_0 ^1 f(x)dx .

letf(x)=(2x+1)ln(1x2)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.3)calculate01f(x)dx.

Commented by turbo msup by abdo last updated on 02/Mar/19

1)leibniz gormula give  f^((n)) (x)=Σ_(k=0) ^n  C_n ^k (2x+1)^((k)) (ln(1−x^2 )^((n−k))   =(2x+1)(ln(1−x^2 )^((n))  +2n(ln(1−x^2 )^((n−1))   we have ln(1−x^2 )^((1))  =((−2x)/(1−x^2 )) ⇒  (ln(1−x^2 )^((n))  =(−((2x)/(1−x^2 )))^((n−1))   =(((2x)/(x^2 −1)))^((n−1))  =((1/(x+1)) +(1/(x−1)))^((n−1))   =((1/(x+1)))^((n−1))  +((1/(x−1)))^((n−1))   =(((−1)^(n−1) (n−1)!)/((x+1)^n )) +(((−1)^(n−1) (n−1)!)/((x−1)^n ))

1)leibnizgormulagivef(n)(x)=k=0nCnk(2x+1)(k)(ln(1x2)(nk)=(2x+1)(ln(1x2)(n)+2n(ln(1x2)(n1)wehaveln(1x2)(1)=2x1x2(ln(1x2)(n)=(2x1x2)(n1)=(2xx21)(n1)=(1x+1+1x1)(n1)=(1x+1)(n1)+(1x1)(n1)=(1)n1(n1)!(x+1)n+(1)n1(n1)!(x1)n

Commented by turbo msup by abdo last updated on 02/Mar/19

also (ln(1−x^2 ))^((n−1))   =(((−1)^(n−2) (n−2)!)/((x+1)^(n−1) )) +(((−1)^(n−2) (n−2)!)/((x−1)^(n−1) )) ⇒  f^((n)) (x) =(2x+1)(−1)^(n−1) (n−1)!{(1/((x+1)^n )) +(1/((x−1)^n ))}  +2n(−1)^(n−2) (n−2)!{(1/((x+1)^(n−1) )) +(1/((x−1)^(n−1) ))}

also(ln(1x2))(n1)=(1)n2(n2)!(x+1)n1+(1)n2(n2)!(x1)n1f(n)(x)=(2x+1)(1)n1(n1)!{1(x+1)n+1(x1)n}+2n(1)n2(n2)!{1(x+1)n1+1(x1)n1}

Commented by maxmathsup by imad last updated on 02/Mar/19

⇒f^((n)) (0) =(−1)^(n−1) (n−1)!{1+(−1)^n } +2n(−1)^n (n−2)!{1+(−1)^(n−1) }  =−(−1)^n (n−1)!{1+(−1)^n } +2n(−1)^n (n−2)!{1−(−1)^n } ⇒  f^((n)) (0) =−(−1)^n (n−1)(n−2)!{1+(−1)^n } +2n(−1)^n (n−2)!{1−(−1)^n }  =(−1)^n (n−2)!{(1−n)(1+(−1)^n ) +2n{1−(−1)^n }}  =(−1)^n (n−2)!{1+(−1)^n −n−n(−1)^n  +2n−2n(−1)^n }  =(−1)^n (n−2)!{ 1+(1−3n)(−1)^n  +n}

f(n)(0)=(1)n1(n1)!{1+(1)n}+2n(1)n(n2)!{1+(1)n1}=(1)n(n1)!{1+(1)n}+2n(1)n(n2)!{1(1)n}f(n)(0)=(1)n(n1)(n2)!{1+(1)n}+2n(1)n(n2)!{1(1)n}=(1)n(n2)!{(1n)(1+(1)n)+2n{1(1)n}}=(1)n(n2)!{1+(1)nnn(1)n+2n2n(1)n}=(1)n(n2)!{1+(13n)(1)n+n}

Commented by maxmathsup by imad last updated on 02/Mar/19

f^′ (x)=2ln(1−x^2 ) +(2x+1)((−2x)/(1−x^2 )) ⇒f^′ (0)=0 and f(0)=0  f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n  =Σ_(n=2) ^∞   (((−1)^n )/(n(n−1))){n+1+(1−3n)(−1)^n } x^n   =Σ_(n=2) ^∞   (((n+1)(−1)^n +1−3n)/(n(n−1)))x^n

f(x)=2ln(1x2)+(2x+1)2x1x2f(0)=0andf(0)=0f(x)=n=0f(n)(0)n!xn=n=2(1)nn(n1){n+1+(13n)(1)n}xn=n=2(n+1)(1)n+13nn(n1)xn

Terms of Service

Privacy Policy

Contact: info@tinkutara.com