Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55310 by afachri last updated on 21/Feb/19

  ∫ 3x(√( 3x^3 + 7))  dx =  . . . .

3x3x3+7dx=....

Commented by MJS last updated on 22/Feb/19

where does this come from?  I tried everything I know but it seems  impossible... of course 3x^2 (√(3x^3 +7)) would be  easy

wheredoesthiscomefrom?ItriedeverythingIknowbutitseemsimpossible...ofcourse3x23x3+7wouldbeeasy

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Feb/19

3x^3 =7tan^2 θ →x=(((7tan^2 θ)/3))^(1/3)   9x^2 dx=14tanθsec^2 θdθ  dx=((14tanθsec^2 θdθ)/(9(((7tan^2 θ)/3))^(2/3) ))dθ  ∫((3(((7tan^2 θ)/3))^(1/3) ×(√(7tan^2 θ +7)) ×14tanθsec^2 θdθ)/(9(((7tan^2 θ)/3))^(2/3) ))  (3/9)∫(((√7) secθ×14tanθ×sec^2 θ)/(((7/3))^(2/3) ×(tanθ)^(4/3) ))dθ  (1/3)×14(√7) ×((3/7))^(2/3) ∫((sec^3 θ)/((tanθ)^(1/3) ))dθ    I=∫((sec^3 θ)/((tanθ)^(1/3) ))dθ  secθ∫sec^2 θ×(1/((tanθ)^(1/3) ))dθ−∫[(d/dθ)(secθ)∫((sec^2 θ)/((tanθ)^(1/3) ))dθ]dθ  secθ×(((tanθ)^(((−1)/3)+1) )/(2/3))−∫secθtanθ×(((tanθ)^(2/3) )/(2/3))dθ  (3/2)secθ(tanθ)^(2/3)  −(3/2)∫secθtanθ(sec^2 θ−1)^(1/3) dθ  (3/2)secθ(tanθ)^(3/2) −(3/2)∫(a^2 −1)^(1/3) da  curfew in headquater...that is brain...wait...

3x3=7tan2θx=(7tan2θ3)139x2dx=14tanθsec2θdθdx=14tanθsec2θdθ9(7tan2θ3)23dθ3(7tan2θ3)13×7tan2θ+7×14tanθsec2θdθ9(7tan2θ3)23397secθ×14tanθ×sec2θ(73)23×(tanθ)43dθ13×147×(37)23sec3θ(tanθ)13dθI=sec3θ(tanθ)13dθsecθsec2θ×1(tanθ)13dθ[ddθ(secθ)sec2θ(tanθ)13dθ]dθsecθ×(tanθ)13+123secθtanθ×(tanθ)2323dθ32secθ(tanθ)2332secθtanθ(sec2θ1)13dθ32secθ(tanθ)3232(a21)13dacurfewinheadquater...thatisbrain...wait...

Commented by afachri last updated on 21/Feb/19

it is hard, isn′t it Sir ??

itishard,isntitSir??

Commented by afachri last updated on 21/Feb/19

oh sir, i think my mind has blown.  hehehe...

ohsir,ithinkmymindhasblown.hehehe...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com