Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 55316 by Kunal12588 last updated on 21/Feb/19

Commented by Kunal12588 last updated on 21/Feb/19

pls help me i found 2519 but don′t know is this   smallest. also it takes 2 hrs for me   every answers are welcome

$${pls}\:{help}\:{me}\:{i}\:{found}\:\mathrm{2519}\:{but}\:{don}'{t}\:{know}\:{is}\:{this}\: \\ $$$${smallest}.\:{also}\:{it}\:{takes}\:\mathrm{2}\:{hrs}\:{for}\:{me} \\ $$$$\:{every}\:{answers}\:{are}\:{welcome} \\ $$

Answered by $@ty@m last updated on 21/Feb/19

General formula for such questions:  Required number=  LCM of divisors−common difference of  divisor & remainder  =2520−1  =2519

$${General}\:{formula}\:{for}\:{such}\:{questions}: \\ $$$${Required}\:{number}= \\ $$$${LCM}\:{of}\:{divisors}−{common}\:{difference}\:{of} \\ $$$${divisor}\:\&\:{remainder} \\ $$$$=\mathrm{2520}−\mathrm{1} \\ $$$$=\mathrm{2519} \\ $$

Commented by Kunal12588 last updated on 21/Feb/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by Kunal12588 last updated on 21/Feb/19

i think you are doing this  n=2x_1 +1=2(x_1 +1)−1  n=3x_2 +2=3(x_2 +1)−1  n=4x_3 +3=4(x_3 +1)−1  n=5x_4 +4=5(x_4 +1)−1  n=6x_5 +5=6(x_5 +1)−1  n=7x_6 +6=7(x_6 +1)−1  n=8x_7 +7=8(x_7 +1)−1  n=9x_8 +8=9(x_8 +1)−1  n=10x_9 +9=10(x_9 +1)−1  so, n = multiple of (1,2,3,4,5,6,7,8,9,10) −1  smallest no.  n=LCM(1,2,3...,9,10)−1  n=2520−1=2519

$${i}\:{think}\:{you}\:{are}\:{doing}\:{this} \\ $$$${n}=\mathrm{2}{x}_{\mathrm{1}} +\mathrm{1}=\mathrm{2}\left({x}_{\mathrm{1}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{3}{x}_{\mathrm{2}} +\mathrm{2}=\mathrm{3}\left({x}_{\mathrm{2}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{4}{x}_{\mathrm{3}} +\mathrm{3}=\mathrm{4}\left({x}_{\mathrm{3}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{5}{x}_{\mathrm{4}} +\mathrm{4}=\mathrm{5}\left({x}_{\mathrm{4}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{6}{x}_{\mathrm{5}} +\mathrm{5}=\mathrm{6}\left({x}_{\mathrm{5}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{7}{x}_{\mathrm{6}} +\mathrm{6}=\mathrm{7}\left({x}_{\mathrm{6}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{8}{x}_{\mathrm{7}} +\mathrm{7}=\mathrm{8}\left({x}_{\mathrm{7}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{9}{x}_{\mathrm{8}} +\mathrm{8}=\mathrm{9}\left({x}_{\mathrm{8}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{10}{x}_{\mathrm{9}} +\mathrm{9}=\mathrm{10}\left({x}_{\mathrm{9}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${so},\:{n}\:=\:{multiple}\:{of}\:\left(\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9},\mathrm{10}\right)\:−\mathrm{1} \\ $$$${smallest}\:{no}. \\ $$$${n}={LCM}\left(\mathrm{1},\mathrm{2},\mathrm{3}...,\mathrm{9},\mathrm{10}\right)−\mathrm{1} \\ $$$${n}=\mathrm{2520}−\mathrm{1}=\mathrm{2519} \\ $$

Commented by Kunal12588 last updated on 21/Feb/19

i actually do it like this quite long  n=10x_9 +9=9x_8 +8  9x_8 =10x_9 +1  after some algebra  2x_1 =10x_9 +8  or x_1 =5x_9 +4  3x_2 =10x_9 +7  4x_3 =10x_9 +6  or 2x_3 =5x_9 +3  5x_4 =10x_9 +5 or  x_4 =2x_9 +1  6x_5 =10x_9 +4  or 3x_5 =5x_9 +2  7x_6 =10x_9 +3   8x_7 =10x_9 +2  or 4x_7 =5x_9 +1  9x_8 =10x_9 +1  after rearranging and reasoning  like this one :−  7x_6 =10x_9 +3=7x_9 +3(x_9 +1)  x_6 =x_9 +3×((x_9 +1)/7)  ∵ n is natural no.   ∴x_6 ∈Z   ∴ x_9 +1 is a multiple of 7  so, i get  x_9 +1 is a multiple of  9,7 and 4  or x_9 +1 is a multiple of 252  lowest value of x_9 +1=252  x_9 =251  now, at last putting the value of x_9  in n=10x_9 +9  n=10×251+9=2519

$${i}\:{actually}\:{do}\:{it}\:{like}\:{this}\:{quite}\:{long} \\ $$$${n}=\mathrm{10}{x}_{\mathrm{9}} +\mathrm{9}=\mathrm{9}{x}_{\mathrm{8}} +\mathrm{8} \\ $$$$\mathrm{9}{x}_{\mathrm{8}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{1} \\ $$$${after}\:{some}\:{algebra} \\ $$$$\mathrm{2}{x}_{\mathrm{1}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{8}\:\:{or}\:{x}_{\mathrm{1}} =\mathrm{5}{x}_{\mathrm{9}} +\mathrm{4} \\ $$$$\mathrm{3}{x}_{\mathrm{2}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{7} \\ $$$$\mathrm{4}{x}_{\mathrm{3}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{6}\:\:{or}\:\mathrm{2}{x}_{\mathrm{3}} =\mathrm{5}{x}_{\mathrm{9}} +\mathrm{3} \\ $$$$\mathrm{5}{x}_{\mathrm{4}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{5}\:{or}\:\:{x}_{\mathrm{4}} =\mathrm{2}{x}_{\mathrm{9}} +\mathrm{1} \\ $$$$\mathrm{6}{x}_{\mathrm{5}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{4}\:\:{or}\:\mathrm{3}{x}_{\mathrm{5}} =\mathrm{5}{x}_{\mathrm{9}} +\mathrm{2} \\ $$$$\mathrm{7}{x}_{\mathrm{6}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{3}\: \\ $$$$\mathrm{8}{x}_{\mathrm{7}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{2}\:\:{or}\:\mathrm{4}{x}_{\mathrm{7}} =\mathrm{5}{x}_{\mathrm{9}} +\mathrm{1} \\ $$$$\mathrm{9}{x}_{\mathrm{8}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{1} \\ $$$${after}\:{rearranging}\:{and}\:{reasoning} \\ $$$${like}\:{this}\:{one}\::− \\ $$$$\mathrm{7}{x}_{\mathrm{6}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{3}=\mathrm{7}{x}_{\mathrm{9}} +\mathrm{3}\left({x}_{\mathrm{9}} +\mathrm{1}\right) \\ $$$${x}_{\mathrm{6}} ={x}_{\mathrm{9}} +\mathrm{3}×\frac{{x}_{\mathrm{9}} +\mathrm{1}}{\mathrm{7}} \\ $$$$\because\:{n}\:{is}\:{natural}\:{no}.\: \\ $$$$\therefore{x}_{\mathrm{6}} \in\mathbb{Z}\: \\ $$$$\therefore\:{x}_{\mathrm{9}} +\mathrm{1}\:{is}\:{a}\:{multiple}\:{of}\:\mathrm{7} \\ $$$${so},\:{i}\:{get} \\ $$$${x}_{\mathrm{9}} +\mathrm{1}\:{is}\:{a}\:{multiple}\:{of}\:\:\mathrm{9},\mathrm{7}\:{and}\:\mathrm{4} \\ $$$${or}\:{x}_{\mathrm{9}} +\mathrm{1}\:{is}\:{a}\:{multiple}\:{of}\:\mathrm{252} \\ $$$${lowest}\:{value}\:{of}\:{x}_{\mathrm{9}} +\mathrm{1}=\mathrm{252} \\ $$$${x}_{\mathrm{9}} =\mathrm{251} \\ $$$${now},\:{at}\:{last}\:{putting}\:{the}\:{value}\:{of}\:{x}_{\mathrm{9}} \:{in}\:{n}=\mathrm{10}{x}_{\mathrm{9}} +\mathrm{9} \\ $$$${n}=\mathrm{10}×\mathrm{251}+\mathrm{9}=\mathrm{2519} \\ $$

Commented by $@ty@m last updated on 21/Feb/19

I didn′t do any of the above  calculations.  I simply remember the formula  given in Arithmetic book by  R.S. Agarwal  meant for preparation of competetive  examination.  You′d find many such useful  formulae (or tricks) there.

$${I}\:{didn}'{t}\:{do}\:{any}\:{of}\:{the}\:{above} \\ $$$${calculations}. \\ $$$${I}\:{simply}\:{remember}\:{the}\:{formula} \\ $$$${given}\:{in}\:{Arithmetic}\:{book}\:{by} \\ $$$${R}.{S}.\:{Agarwal} \\ $$$${meant}\:{for}\:{preparation}\:{of}\:{competetive} \\ $$$${examination}. \\ $$$${You}'{d}\:{find}\:{many}\:{such}\:{useful} \\ $$$${formulae}\:\left({or}\:{tricks}\right)\:{there}. \\ $$

Commented by Kunal12588 last updated on 22/Feb/19

great sir. thanks once more

$${great}\:{sir}.\:{thanks}\:{once}\:{more} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com