Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 55373 by gunawan last updated on 23/Feb/19

lim_(n→∝)  ∫_0 ^1 ((x^n e^x^n  )/(cos x)) dx=...

limn→∝01xnexncosxdx=...

Commented by turbo msup by abdo last updated on 23/Feb/19

let I_n =∫_0 ^1   ((x^n e^x^n  )/(cosx))dx ⇒  I_n =∫_R   ((x^n  e^x^n  )/(cosx)) χ_([0,1]) (x)dx  but lim_(n→+∞)   ((x^n  e^x^n  )/(cosx)) χ_([0,1]) (x)=0 ⇒  lim_(n→+∞)  I_n =0 .

letIn=01xnexncosxdxIn=Rxnexncosxχ[0,1](x)dxbutlimn+xnexncosxχ[0,1](x)=0limn+In=0.

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Feb/19

f(x)=((x^n e^x^n  )/(cosx))  f(0)=0    f(1)=(e/(cos1))  let [f(x)]_(max) =M  when   x[0,1]  [f(x)]_(min) =m   when x[0,1]        M>f(x)>m  ∫_0 ^1 Mdx>∫_0 ^1 f(x)dx>∫_0 ^1 mdx  M>∫_0 ^1 f(x)dx>m  f(x)=((x^n e^x^n  )/(cosx))  1)cosx≠0 in x [0,1]  2)as n→∞ e^x^n  →1(attaching graph)  3)as n→∞  x^n →0  so lim_(n→∞)  ∫_0 ^1 ((x^n e^x^n  )/(cosx))dx→0

f(x)=xnexncosxf(0)=0f(1)=ecos1let[f(x)]max=Mwhenx[0,1][f(x)]min=mwhenx[0,1]M>f(x)>m01Mdx>01f(x)dx>01mdxM>01f(x)dx>mf(x)=xnexncosx1)cosx0inx[0,1]2)asnexn1(attachinggraph)3)asnxn0solimn01xnexncosxdx0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com