All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 55373 by gunawan last updated on 23/Feb/19
limn→∝∫01xnexncosxdx=...
Commented by turbo msup by abdo last updated on 23/Feb/19
letIn=∫01xnexncosxdx⇒In=∫Rxnexncosxχ[0,1](x)dxbutlimn→+∞xnexncosxχ[0,1](x)=0⇒limn→+∞In=0.
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Feb/19
f(x)=xnexncosxf(0)=0f(1)=ecos1let[f(x)]max=Mwhenx[0,1][f(x)]min=mwhenx[0,1]M>f(x)>m∫01Mdx>∫01f(x)dx>∫01mdxM>∫01f(x)dx>mf(x)=xnexncosx1)cosx≠0inx[0,1]2)asn→∞exn→1(attachinggraph)3)asn→∞xn→0solimn→∞∫01xnexncosxdx→0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com