Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55454 by maxmathsup by imad last updated on 24/Feb/19

let f(a) =∫_0 ^∞   ((ln(x))/(x^2  +a))  with a>0  1) calculate f(a) intermsof a  2) find the values of ∫_0 ^∞  ((ln(x))/(x^2 +1))dx and ∫_0 ^∞   ((ln(x))/(x^2  +2))dx  3) let g(a) =∫_0 ^∞    ((ln(x))/((x^2  +a)^n )) dx  .calculate g(a) interms of a  4) find values> of ∫_0 ^∞   ((ln(x))/((x^2  +3)^2 ))dx  5) find nature of the serie Σ f(n)  andΣ g(n)

letf(a)=0ln(x)x2+awitha>0 1)calculatef(a)intermsofa 2)findthevaluesof0ln(x)x2+1dxand0ln(x)x2+2dx 3)letg(a)=0ln(x)(x2+a)ndx.calculateg(a)intermsofa 4)findvalues>of0ln(x)(x2+3)2dx 5)findnatureoftheserieΣf(n)andΣg(n)

Commented bymaxmathsup by imad last updated on 24/Feb/19

g(a) =∫_0 ^∞  ((ln(x))/((x^2  +a)^2 ))dx .

g(a)=0ln(x)(x2+a)2dx.

Commented bymaxmathsup by imad last updated on 26/Feb/19

1) changement x =(√a)t give f(a) =∫_0 ^∞  ((ln((√a)t))/(a(t^2 +1))) (√a)dt =(1/(√a)) ∫_0 ^∞  ((ln((√a))+ln(t))/(1+t^2 ))dt  =((ln((√(a))))/(√a))∫_0 ^∞  (dt/(1+t^2 )) +(1/(√a))∫_0 ^∞  ((ln(t))/(1+t^2 )) dt  but chang.t =(1/u) drive to ∫_0 ^∞  ((ln(t))/(1+t^2 ))dt=0 ⇒  f(a) =(π/2) ((ln((√a)))/(√a)) ⇒ ★f(a) =(π/4) ((ln(a))/(√a)) ★  2)we have ∫_0 ^∞  ((ln(x))/(x^2  +1))dx =f(1) =0  ∫_0 ^∞  ((ln(x))/(x^2  +2)) dx =f(2) =((πln(2))/(4(√2)))  3)we have f^′ (a) =−∫_0 ^∞   ((ln(x))/((x^2  +a)^2 )) dx =−g(a) ⇒g(a)=−f^′ (a)  but f^′ (a) =(π/4) ((((√a)/a)−ln(a)(1/(2(√a))))/a) =(π/4) (((2a−aln(a))/(2a(√a)))/a) =(π/4) ((2−lna)/(2a(√a))) ⇒  ★g(a) =((π(ln(a)−2))/(8a(√a)))★  4)∫_0 ^∞    ((ln(x))/((x^2  +3)^2 ))dx =g(3)=((π(ln3−2))/(24(√3)))

1)changementx=atgivef(a)=0ln(at)a(t2+1)adt=1a0ln(a)+ln(t)1+t2dt =ln(a)a0dt1+t2+1a0ln(t)1+t2dtbutchang.t=1udriveto0ln(t)1+t2dt=0 f(a)=π2ln(a)af(a)=π4ln(a)a 2)wehave0ln(x)x2+1dx=f(1)=0 0ln(x)x2+2dx=f(2)=πln(2)42 3)wehavef(a)=0ln(x)(x2+a)2dx=g(a)g(a)=f(a) butf(a)=π4aaln(a)12aa=π42aaln(a)2aaa=π42lna2aa g(a)=π(ln(a)2)8aa 4)0ln(x)(x2+3)2dx=g(3)=π(ln32)243

Commented bymaxmathsup by imad last updated on 26/Feb/19

5) we have Σ_(n≥1)  f(n) =(π/4)Σ_(n≥1)    ((ln(n))/(√n))  let ϕ(t)=((ln(t))/(√t))   ⇒ϕ^′ (t) =((((√t)/t)−ln(t)(1/(2(√t))))/t) =(((1/(√t))−((ln(t))/(2(√t))))/t) =((2−ln(t))/(2t(√t)))  for t≥e^2  ⇒ln(t)≥2 ⇒ ϕ^′ (t)≤0 ⇒ ϕ is decreasing  so Σ f(n) and   ∫_e^2  ^(+∞)  ((ln(x))/(√x)) dx have the same nature   ∫_e^2  ^(+∞)   ((ln(x))/(√x)) dx =_(x=t^2 )      ∫_e ^(+∞)   ((2ln(t))/t) (2t)dt = 4∫_e ^(+∞) ln(t)dt =+∞ ⇒  Σ f(n) is divergent .

5)wehaven1f(n)=π4n1ln(n)n letφ(t)=ln(t)tφ(t)=ttln(t)12tt=1tln(t)2tt=2ln(t)2tt forte2ln(t)2φ(t)0φisdecreasingsoΣf(n)and e2+ln(x)xdxhavethesamenature e2+ln(x)xdx=x=t2e+2ln(t)t(2t)dt=4e+ln(t)dt=+ Σf(n)isdivergent.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com