Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55457 by maxmathsup by imad last updated on 24/Feb/19

calculate ∫_0 ^∞    ((ln(x))/(x^2 +x+1))dx .

calculate0ln(x)x2+x+1dx.

Commented by maxmathsup by imad last updated on 05/Mar/19

let I =∫_0 ^∞  ((ln(x))/(x^2  +x+1))dx   ⇒I =∫_0 ^∞  ((lnx)/((x+(1/2))^2  +(3/4)))dx  =_(x+(1/2)=((√3)/2)t)     ∫_(1/(√3)) ^(+∞)  ((ln(((√3)/2)t−(1/2)))/((3/4)(1+t^2 ))) ((√3)/2)dt =(4/3) ((√3)/2) ∫_(1/(√3)) ^(+∞)   ((ln(((√3)/2)t−(1/2)))/(1+t^2 ))dt  =(2/(√3)) ∫_(1/(√3)) ^(+∞)   ((ln(((√3)/2)t−(1/2)))/(t^2  +1))dt ⇒ I =(2/(√3)) ∫_(1/(√3)) ^(+∞)   ((ln(((√3)/2)x−(1/2)))/(x^2  +1))dx let   f(t) =∫_(1/(√3)) ^(+∞)   ((ln(tx−1))/(x^2  +1))dx ⇒f^′ (t) =∫_(1/(√3)) ^(+∞)     (x/((tx−1)(x^2  +1)))dx let decompise  F(x) =(x/((tx−1)(x^2  +1))) ⇒F(x)=(a/(tx−1)) +((bx +c)/(x^2  +1))  a =lim_(x→(1/t))    (tx−1)F(x) =(1/(t((1/t^2 ) +1))) =(1/(t+(1/t))) =(t/(t^2  +1))  lim_(x→+∞) xF(x)=(a/t) +b =0 ⇒b =−(a/t) =−(1/(t^2  +1)) ⇒  F(x) =(t/((t^2  +1)(tx−1))) +((−(1/(t^2  +1))x+c)/(x^2  +1))  F(0) =0 =−(t/(t^2  +1)) +c ⇒c =(t/(t^2  +1)) ⇒  F(x) =(t/((t^2  +1)(tx−1))) +(1/(t^2  +1)) ((−x+t)/(x^2  +1)) ⇒  ∫ F(x)dx =(1/(t^2  +1))ln∣tx−1∣−(1/(2(t^2  +1)))ln(x^2  +1) +(t/(t^2  +1)) arctan(x) +c ⇒  ∫_(1/(√3)) ^(+∞)  F(x)dx =(1/(t^2  +1))[ln∣((tx−1)/(√(x^2  +1)))∣]_(1/(√3)) ^(+∞)   +(t/(t^2  +1))[arctant]_(1/(√3)) ^(+∞)   =(1/(t^2  +1)){ln∣t∣−ln∣(((t/(√3))−1)/(2/(√3)))∣} +(t/(t^2  +1)){(π/2) −(π/6)}  =(1/(t^2  +1)){ln∣t∣−ln∣((t−(√3))/2)∣} +((πt)/(3(t^2  +1))) =f^′ (t) ⇒  f(t) =∫ ((ln∣t∣)/(t^2  +1))dt−∫  ((ln∣t−(√3))−ln(2))/(t^2  +1)) dt  +(π/6)ln(t^2  +1) +C  =∫  ((ln∣t∣)/(t^2  +1))dt   −∫((ln∣t−(√3)∣)/(t^2  +1))dt+ln(2)arctant +C ....be continued....

letI=0ln(x)x2+x+1dxI=0lnx(x+12)2+34dx=x+12=32t13+ln(32t12)34(1+t2)32dt=433213+ln(32t12)1+t2dt=2313+ln(32t12)t2+1dtI=2313+ln(32x12)x2+1dxletf(t)=13+ln(tx1)x2+1dxf(t)=13+x(tx1)(x2+1)dxletdecompiseF(x)=x(tx1)(x2+1)F(x)=atx1+bx+cx2+1a=limx1t(tx1)F(x)=1t(1t2+1)=1t+1t=tt2+1limx+xF(x)=at+b=0b=at=1t2+1F(x)=t(t2+1)(tx1)+1t2+1x+cx2+1F(0)=0=tt2+1+cc=tt2+1F(x)=t(t2+1)(tx1)+1t2+1x+tx2+1F(x)dx=1t2+1lntx112(t2+1)ln(x2+1)+tt2+1arctan(x)+c13+F(x)dx=1t2+1[lntx1x2+1]13++tt2+1[arctant]13+=1t2+1{lntlnt3123}+tt2+1{π2π6}=1t2+1{lntlnt32}+πt3(t2+1)=f(t)f(t)=lntt2+1dtlnt3)ln(2)t2+1dt+π6ln(t2+1)+C=lntt2+1dtlnt3t2+1dt+ln(2)arctant+C....becontinued....

Commented by Abdo msup. last updated on 05/Mar/19

let try another way we have I =∫_0 ^∞  (((1−x)lnx)/(1−x^3 ))dx  = ∫_0 ^1   (((1−x)ln(x))/(1−x^3 ))dx +∫_1 ^(+∞)  (((1−x)ln(x))/(1−x^3 ))dx but  ∫_1 ^∞   (((1−x)ln(x))/(1−x^3 ))dx =_(x=(1/t))     −∫_0 ^1  (((1−(1/t))(−ln(t)))/(1−(1/t^3 ))) (((−dt)/t^2 ))  =−∫_0 ^1      (((t−1)ln(t))/(t^3 −1))dt =∫_0 ^1   (((t−1)ln(t))/(1−t^3 )) dt  =−∫_0 ^1 (((1−t)ln(t))/(1−t^3 ))dt ⇒ I =0

lettryanotherwaywehaveI=0(1x)lnx1x3dx=01(1x)ln(x)1x3dx+1+(1x)ln(x)1x3dxbut1(1x)ln(x)1x3dx=x=1t01(11t)(ln(t))11t3(dtt2)=01(t1)ln(t)t31dt=01(t1)ln(t)1t3dt=01(1t)ln(t)1t3dtI=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com