Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 55501 by ajfour last updated on 25/Feb/19

Roots of x^3 +px+q=0  are  x = u+v  u^3 , v^3  are roots of         z^2 −α^3 z+β^6 =0     ((d^2 (y/x))/dx^2 )∣_(x=α) =0  , (dy/dx)∣_(x=β) =0 .  I have noticed long way back,  please hunt why (how come) ?

$${Roots}\:{of}\:{x}^{\mathrm{3}} +{px}+{q}=\mathrm{0} \\ $$$${are}\:\:{x}\:=\:{u}+{v} \\ $$$${u}^{\mathrm{3}} ,\:{v}^{\mathrm{3}} \:{are}\:{roots}\:{of} \\ $$$$\:\:\:\:\:\:\:{z}^{\mathrm{2}} −\alpha^{\mathrm{3}} {z}+\beta^{\mathrm{6}} =\mathrm{0} \\ $$$$\:\:\:\frac{{d}^{\mathrm{2}} \left({y}/{x}\right)}{{dx}^{\mathrm{2}} }\mid_{{x}=\alpha} =\mathrm{0}\:\:,\:\frac{{dy}}{{dx}}\mid_{{x}=\beta} =\mathrm{0}\:. \\ $$$${I}\:{have}\:{noticed}\:{long}\:{way}\:{back}, \\ $$$${please}\:{hunt}\:{why}\:\left({how}\:{come}\right)\:? \\ $$

Commented by ajfour last updated on 25/Feb/19

(dy/dx)=3x^2 +p =0  ⇒  β^( 6)  = −(p^3 /(27))   (y/x)= x^2 +p+(q/x)  ((d(y/x))/dx)=2x−(q/x^2 )  ((d^2 (y/x))/dx^2 )=2+((2q)/x^3 ) =0  ⇒ α^3  = −q    z^2 −α^3 z+β^( 6) =0  ⇒  z_1 , z_2  = u^3 , v^3   are         = (α^3 /2)±(√(((α^3 /2))^2 −β^( 6) ))        = −(q/2)±(√((q^2 /4)+(p^3 /(27))))   x = u+v       = (−(q/2)+(√((q^2 /4)+(p^3 /(27)))) )^(1/3)                  +(−(q/2)+(√((q^2 /4)+(p^3 /(27)))) )^(1/3)  .  Just have noticed so!

$$\frac{{dy}}{{dx}}=\mathrm{3}{x}^{\mathrm{2}} +{p}\:=\mathrm{0}\:\:\Rightarrow\:\:\beta^{\:\mathrm{6}} \:=\:−\frac{{p}^{\mathrm{3}} }{\mathrm{27}}\: \\ $$$$\frac{{y}}{{x}}=\:{x}^{\mathrm{2}} +{p}+\frac{{q}}{{x}} \\ $$$$\frac{{d}\left({y}/{x}\right)}{{dx}}=\mathrm{2}{x}−\frac{{q}}{{x}^{\mathrm{2}} } \\ $$$$\frac{{d}^{\mathrm{2}} \left({y}/{x}\right)}{{dx}^{\mathrm{2}} }=\mathrm{2}+\frac{\mathrm{2}{q}}{{x}^{\mathrm{3}} }\:=\mathrm{0}\:\:\Rightarrow\:\alpha^{\mathrm{3}} \:=\:−{q} \\ $$$$\:\:{z}^{\mathrm{2}} −\alpha^{\mathrm{3}} {z}+\beta^{\:\mathrm{6}} =\mathrm{0} \\ $$$$\Rightarrow\:\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:=\:{u}^{\mathrm{3}} ,\:{v}^{\mathrm{3}} \:\:{are} \\ $$$$\:\:\:\:\:\:\:=\:\frac{\alpha^{\mathrm{3}} }{\mathrm{2}}\pm\sqrt{\left(\frac{\alpha^{\mathrm{3}} }{\mathrm{2}}\right)^{\mathrm{2}} −\beta^{\:\mathrm{6}} } \\ $$$$\:\:\:\:\:\:=\:−\frac{{q}}{\mathrm{2}}\pm\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}} \\ $$$$\:{x}\:=\:{u}+{v} \\ $$$$\:\:\:\:\:=\:\left(−\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}}\:\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left(−\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}}\:\right)^{\mathrm{1}/\mathrm{3}} \:. \\ $$$${Just}\:{have}\:{noticed}\:{so}! \\ $$

Commented by mr W last updated on 25/Feb/19

welcome back sir!

$${welcome}\:{back}\:{sir}! \\ $$

Commented by ajfour last updated on 25/Feb/19

was busy with polynomials Sir,  found nothing new, did lot of  experimenting.

$${was}\:{busy}\:{with}\:{polynomials}\:{Sir}, \\ $$$${found}\:{nothing}\:{new},\:{did}\:{lot}\:{of} \\ $$$${experimenting}. \\ $$

Commented by mr W last updated on 25/Feb/19

glad to know that things are going  well with you sir!

$${glad}\:{to}\:{know}\:{that}\:{things}\:{are}\:{going} \\ $$$${well}\:{with}\:{you}\:{sir}! \\ $$

Commented by ajfour last updated on 25/Feb/19

thanks for the concern Sir.

$${thanks}\:{for}\:{the}\:{concern}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com