Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55571 by maxmathsup by imad last updated on 26/Feb/19

let u_n = ∫_(π/(n+1)) ^(π/n) (√(tan(x)))dx  with n≥3  1) calculate U_n  interms of n   and calculate lim_(n→+∞  )  U_n   2) find nature of the serie Σ_(n≥3)  U_n

$${let}\:{u}_{{n}} =\:\int_{\frac{\pi}{{n}+\mathrm{1}}} ^{\frac{\pi}{{n}}} \sqrt{{tan}\left({x}\right)}{dx}\:\:{with}\:{n}\geqslant\mathrm{3} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n}\:\:\:{and}\:{calculate}\:{lim}_{{n}\rightarrow+\infty\:\:} \:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\sum_{{n}\geqslant\mathrm{3}} \:{U}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 03/Mar/19

1) we have proved that   ∫(√(tanx))dx =(1/(√2)){ln((√((tanx−(√(2tanx))+1)/(tanx +(√(2tanx))+1))) +arctan((√(2tanx))+1)+arctan((√(2tanx))−1)} +c  ⇒u_n =(1/(√2))[ln(√((tannx−(√(2tanx))+1)/(tanx +(√(2tanx))+1)))) +arctan((√(2tanx))+1)+arctan((√(2tanx))−1)]_(π/(n+1)) ^(π/n)   =(1/(√2)) A_n −(1/(√2)) B_n   with  A_n =ln((√((tan((π/n))−(√(2tan((π/n))))+1)/(tan((π/n))+(√(2tan((π/n))))+1))))+arctan((√(2tan((π/n))))+1)  +arctan((√(2tan((π/n))))−1)} and  B_n =ln((√((tan((π/(n+1)))−(√(2tan((π/(n+1)))))+1)/(tan((π/(n+1)))+(√(2tan((π/(n+1)))))+1))))+arctan((√(2tan((π/(n+1)))))+1)  +arctan((√(2tan((π/(n+1)))))−1}  we have lim_(n→+∞)  A_n =ln((1/1))+arctan(1)+arctan(−1) =0  lim_(n→+∞) B_n =ln((1/1))+arctan(1)+arctan(−1)=0 ⇒lim_(n→+∞) u_n =0

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{proved}\:{that}\: \\ $$$$\int\sqrt{{tanx}}{dx}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\left\{{ln}\left(\sqrt{\frac{{tanx}−\sqrt{\mathrm{2}{tanx}}+\mathrm{1}}{{tanx}\:+\sqrt{\mathrm{2}{tanx}}+\mathrm{1}}}\:+{arctan}\left(\sqrt{\mathrm{2}{tanx}}+\mathrm{1}\right)+{arctan}\left(\sqrt{\mathrm{2}{tanx}}−\mathrm{1}\right)\right\}\:+{c}\right. \\ $$$$\left.\Rightarrow{u}_{{n}} =\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\left[{ln}\sqrt{\frac{{tannx}−\sqrt{\mathrm{2}{tanx}}+\mathrm{1}}{{tanx}\:+\sqrt{\mathrm{2}{tanx}}+\mathrm{1}}}\right)\:+{arctan}\left(\sqrt{\mathrm{2}{tanx}}+\mathrm{1}\right)+{arctan}\left(\sqrt{\mathrm{2}{tanx}}−\mathrm{1}\right)\right]_{\frac{\pi}{{n}+\mathrm{1}}} ^{\frac{\pi}{{n}}} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:{A}_{{n}} −\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:{B}_{{n}} \:\:{with} \\ $$$${A}_{{n}} ={ln}\left(\sqrt{\frac{{tan}\left(\frac{\pi}{{n}}\right)−\sqrt{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)}+\mathrm{1}}{{tan}\left(\frac{\pi}{{n}}\right)+\sqrt{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)}+\mathrm{1}}}\right)+{arctan}\left(\sqrt{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)}+\mathrm{1}\right) \\ $$$$\left.+{arctan}\left(\sqrt{\mathrm{2}{tan}\left(\frac{\pi}{{n}}\right)}−\mathrm{1}\right)\right\}\:{and} \\ $$$${B}_{{n}} ={ln}\left(\sqrt{\frac{{tan}\left(\frac{\pi}{{n}+\mathrm{1}}\right)−\sqrt{\mathrm{2}{tan}\left(\frac{\pi}{{n}+\mathrm{1}}\right)}+\mathrm{1}}{{tan}\left(\frac{\pi}{{n}+\mathrm{1}}\right)+\sqrt{\mathrm{2}{tan}\left(\frac{\pi}{{n}+\mathrm{1}}\right)}+\mathrm{1}}}\right)+{arctan}\left(\sqrt{\mathrm{2}{tan}\left(\frac{\pi}{{n}+\mathrm{1}}\right)}+\mathrm{1}\right) \\ $$$$+{arctan}\left(\sqrt{\mathrm{2}{tan}\left(\frac{\pi}{{n}+\mathrm{1}}\right)}−\mathrm{1}\right\} \\ $$$${we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} ={ln}\left(\frac{\mathrm{1}}{\mathrm{1}}\right)+{arctan}\left(\mathrm{1}\right)+{arctan}\left(−\mathrm{1}\right)\:=\mathrm{0} \\ $$$${lim}_{{n}\rightarrow+\infty} {B}_{{n}} ={ln}\left(\frac{\mathrm{1}}{\mathrm{1}}\right)+{arctan}\left(\mathrm{1}\right)+{arctan}\left(−\mathrm{1}\right)=\mathrm{0}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {u}_{{n}} =\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com