All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 55571 by maxmathsup by imad last updated on 26/Feb/19
letun=∫πn+1πntan(x)dxwithn⩾31)calculateUnintermsofnandcalculatelimn→+∞Un2)findnatureoftheserie∑n⩾3Un
Commented by maxmathsup by imad last updated on 03/Mar/19
1)wehaveprovedthat∫tanxdx=12{ln(tanx−2tanx+1tanx+2tanx+1+arctan(2tanx+1)+arctan(2tanx−1)}+c⇒un=12[lntannx−2tanx+1tanx+2tanx+1)+arctan(2tanx+1)+arctan(2tanx−1)]πn+1πn=12An−12BnwithAn=ln(tan(πn)−2tan(πn)+1tan(πn)+2tan(πn)+1)+arctan(2tan(πn)+1)+arctan(2tan(πn)−1)}andBn=ln(tan(πn+1)−2tan(πn+1)+1tan(πn+1)+2tan(πn+1)+1)+arctan(2tan(πn+1)+1)+arctan(2tan(πn+1)−1}wehavelimn→+∞An=ln(11)+arctan(1)+arctan(−1)=0limn→+∞Bn=ln(11)+arctan(1)+arctan(−1)=0⇒limn→+∞un=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com