All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 55577 by rahul 19 last updated on 27/Feb/19
Commented by rahul 19 last updated on 27/Feb/19
Provethat:
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Feb/19
dFdα=∫∂∂α(ln(1+αx)1+x2)dx+ln(1+α2)1+α2×dαdα−ln(1+α×0)1+02×ddα(0)=∫0α11+x2×11+αx×xdx+ln(1+α2)1+α2=∫0αx(1+x2)(1+αx)dx+ln(1+α2)1+α2nowx(1+x2)(1+αx)=ax+b1+x2+c1+αxx=(ax+b)(1+αx)+c+cx2x=ax+aαx2+b+bαx+c+cx2x=x2(aα+c)+x(a+bα)+b+caα+c=0a+bα=1b+c=0aα−b=0a+bα=1a+aα2=1a=11+α2b=α1+α2c=−α1+α2∫0α(ax+b1+x2+c1+αx)dx12(1+α2)∫0α2x1+x2+α1+α2∫0αdx1+x2+−α1+α2∫dx1+αx12(1+α2)∫0αd(1+x2)1+x2+α1+α2∫0αdx1+x2+−α1+α2∫0αdx1+αx∣12(1+α2)ln(1+x2)+α1+α2tan−1(x)+−α1+α2×ln(1+αx)α∣0α12(1+α2)×ln(1+α2)+α1+α2tan−1(α)+−11+α2×ln(1+α2)=α1+α2tan−1(α)−12(1+α2)×ln(1+α2)sodFdα=α1+α2tan−1(α)+ln(1+α2)2(1+α2)waitpls=tan−1(α)ddα{ln1+α2}+ln{1+α2×ddαtan−1α}=ddα{tan−1α×ln1+α2}soF=tan−1(α)×ln1+α2proved
Terms of Service
Privacy Policy
Contact: info@tinkutara.com