Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55577 by rahul 19 last updated on 27/Feb/19

Commented by rahul 19 last updated on 27/Feb/19

Prove that:

Provethat:

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Feb/19

(dF/dα)=∫(∂/∂α)(((ln(1+αx))/(1+x^2 )))dx+((ln(1+α^2 ))/(1+α^2 ))×(dα/dα)−((ln(1+α×0))/(1+0^2 ))×(d/dα)(0)  =∫_0 ^α (1/(1+x^2 ))×(1/(1+αx))×x dx+((ln(1+α^2 ))/(1+α^2 ))  =∫_0 ^α (x/((1+x^2 )(1+αx)))dx+((ln(1+α^2 ))/(1+α^2 ))  now   (x/((1+x^2 )(1+αx)))=((ax+b)/(1+x^2 ))+(c/(1+αx))  x=(ax+b)(1+αx)+c+cx^2   x=ax+aαx^2 +b+bαx+c+cx^2   x=x^2 (aα+c)+x(a+bα)+b+c  aα+c=0  a+bα=1  b+c=0  aα−b=0  a+bα=1  a+aα^2 =1  a=(1/(1+α^2 ))   b=(α/(1+α^2 ))  c=((−α)/(1+α^2 ))  ∫_0 ^α (((ax+b)/(1+x^2 ))+(c/(1+αx)))dx  (1/(2(1+α^2 )))∫_0 ^α ((2x)/(1+x^2 ))+(α/(1+α^2 ))∫_0 ^α (dx/(1+x^2 ))+((−α)/(1+α^2 ))∫(dx/(1+αx))  (1/(2(1+α^2 )))∫_0 ^α ((d(1+x^2 ))/(1+x^2 ))+(α/(1+α^2 ))∫_0 ^α (dx/(1+x^2 ))+((−α)/(1+α^2 ))∫_0 ^α (dx/(1+αx))  ∣(1/(2(1+α^2 )))ln(1+x^2 )+(α/(1+α^2 ))tan^(−1) (x)+((−α)/(1+α^2 ))×((ln(1+αx))/α)∣_0 ^α   (1/(2(1+α^2 )))×ln(1+α^2 )+(α/(1+α^2 ))tan^(−1) (α)+((−1)/(1+α^2 ))×ln(1+α^2 )  =(α/(1+α^2 ))tan^(−1) (α)−(1/(2(1+α^2 )))×ln(1+α^2 )  so  (dF/dα)=(α/(1+α^2 ))tan^(−1) (α)+((ln(1+α^2 ))/(2(1+α^2 )))  wait pls  =tan^(−1) (α)(d/dα){ln(√(1+α^2 )) }+ln{(√(1+α^2 )) ×(d/dα)tan^(−1) α}  =(d/dα){tan^(−1) α×ln(√(1+α^2 )) }  so F=tan^(−1) (α)×ln(√(1+α^2 )) proved

dFdα=α(ln(1+αx)1+x2)dx+ln(1+α2)1+α2×dαdαln(1+α×0)1+02×ddα(0)=0α11+x2×11+αx×xdx+ln(1+α2)1+α2=0αx(1+x2)(1+αx)dx+ln(1+α2)1+α2nowx(1+x2)(1+αx)=ax+b1+x2+c1+αxx=(ax+b)(1+αx)+c+cx2x=ax+aαx2+b+bαx+c+cx2x=x2(aα+c)+x(a+bα)+b+caα+c=0a+bα=1b+c=0aαb=0a+bα=1a+aα2=1a=11+α2b=α1+α2c=α1+α20α(ax+b1+x2+c1+αx)dx12(1+α2)0α2x1+x2+α1+α20αdx1+x2+α1+α2dx1+αx12(1+α2)0αd(1+x2)1+x2+α1+α20αdx1+x2+α1+α20αdx1+αx12(1+α2)ln(1+x2)+α1+α2tan1(x)+α1+α2×ln(1+αx)α0α12(1+α2)×ln(1+α2)+α1+α2tan1(α)+11+α2×ln(1+α2)=α1+α2tan1(α)12(1+α2)×ln(1+α2)sodFdα=α1+α2tan1(α)+ln(1+α2)2(1+α2)waitpls=tan1(α)ddα{ln1+α2}+ln{1+α2×ddαtan1α}=ddα{tan1α×ln1+α2}soF=tan1(α)×ln1+α2proved

Terms of Service

Privacy Policy

Contact: info@tinkutara.com