Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 5561 by Rasheed Soomro last updated on 20/May/16

A chord is drawn in a circle that  divides the circle in 1:2 (ratio).  In what ratio the chord divides  the diameter perpendicular to  the chord?

$$\mathrm{A}\:\mathrm{chord}\:\mathrm{is}\:\mathrm{drawn}\:\mathrm{in}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{that} \\ $$$$\mathrm{divides}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{in}\:\mathrm{1}:\mathrm{2}\:\left(\mathrm{ratio}\right). \\ $$$$\mathrm{In}\:\mathrm{what}\:\mathrm{ratio}\:\mathrm{the}\:\mathrm{chord}\:\mathrm{divides} \\ $$$$\mathrm{the}\:\mathrm{diameter}\:\mathrm{perpendicular}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{chord}? \\ $$

Commented by Rasheed Soomro last updated on 20/May/16

Commented by Rasheed Soomro last updated on 20/May/16

Given:Area SegmentBEC:AreaSegmentBDC=1:2                 ED⊥BC  Required:EF:FD=?

$$\mathrm{Given}:{Area}\:\mathrm{SegmentBEC}:{Area}\mathrm{SegmentBDC}=\mathrm{1}:\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{ED}\bot\mathrm{BC} \\ $$$$\mathrm{Required}:\mathrm{EF}:\mathrm{FD}=? \\ $$

Answered by Rasheed Soomro last updated on 21/May/16

Commented by Rasheed Soomro last updated on 22/May/16

Seg=Segment, Sec=Sector  AreaSegBDC=AreaSecBDC−▲ABC         Let r is radius of the circle and         Central angle of secBDC=α rad.         AreaSecBDC=(1/2)r^2 α          ▲ABC=(1/2)r^2 sin α  AreaSegBDC=(1/2)r^2 α−(1/2)r^2 sin α                              =(1/2)r^2 [α−sin α]  AreaSegBEC=π r^2 −AreaSegBDC                               =π r^2 −((1/2))r^2 [α−sin α]                               =r^2 (π−(1/2)[α−sin α])  AreaSegBDC : AreaSegBEC=1 : 2  (((1/2)r^2 [α−sin α])/(r^2 (π−(1/2)[α−sin α])))=(1/2)  (((1/2)[α−sin α])/(π−(1/2)[α−sin α]))=(1/2)  α−sin α=π−(1/2)[α−sin α]  2α−2 sin α=2π−α+sin α  3α−3 sin α=2π  α−sin α=(2/3)π  Now in △AFB  ∠AFB=π/2  rad  ∠FAB=(α/2) rad  cos(∠FAB)=((AF)/(AB))=((AF)/r)  AF=r cos(α/2)  DF=k=r−AF=r−r cos(α/2)=r(1−cos(α/2))  FE=2r−k=2r−r(1−cos(α/2))=r(1+cos(α/2))  ((DF)/(FE))=((r(1−cos(α/2)))/(r(1+cos(α/2))))=((1−cos(α/2))/(1+cos(α/2)))  Required ratio (((DF)/(FE)))=((1−cos(α/2))/(1+cos(α/2))) ,where α is  such that    α−sin α=(2/3)π

$$\mathrm{Seg}=\mathrm{Segment},\:\mathrm{Sec}=\mathrm{Sector} \\ $$$$\mathrm{AreaSegBDC}=\mathrm{AreaSecBDC}−\blacktriangle\mathrm{ABC} \\ $$$$\:\:\:\:\:\:\:\mathrm{Let}\:\mathrm{r}\:\mathrm{is}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{and} \\ $$$$\:\:\:\:\:\:\:\mathrm{Central}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{secBDC}=\alpha\:\mathrm{rad}. \\ $$$$\:\:\:\:\:\:\:\mathrm{AreaSecBDC}=\left(\mathrm{1}/\mathrm{2}\right)\mathrm{r}^{\mathrm{2}} \alpha \\ $$$$\:\:\:\:\:\:\:\:\blacktriangle\mathrm{ABC}=\left(\mathrm{1}/\mathrm{2}\right)\mathrm{r}^{\mathrm{2}} \mathrm{sin}\:\alpha \\ $$$$\mathrm{AreaSegBDC}=\left(\mathrm{1}/\mathrm{2}\right)\mathrm{r}^{\mathrm{2}} \alpha−\left(\mathrm{1}/\mathrm{2}\right)\mathrm{r}^{\mathrm{2}} \mathrm{sin}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{1}/\mathrm{2}\right)\mathrm{r}^{\mathrm{2}} \left[\alpha−\mathrm{sin}\:\alpha\right] \\ $$$$\mathrm{AreaSegBEC}=\pi\:\mathrm{r}^{\mathrm{2}} −\mathrm{AreaSegBDC} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\pi\:\mathrm{r}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{r}^{\mathrm{2}} \left[\alpha−\mathrm{sin}\:\alpha\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{r}^{\mathrm{2}} \left(\pi−\frac{\mathrm{1}}{\mathrm{2}}\left[\alpha−\mathrm{sin}\:\alpha\right]\right) \\ $$$$\mathrm{AreaSegBDC}\::\:\mathrm{AreaSegBEC}=\mathrm{1}\::\:\mathrm{2} \\ $$$$\frac{\left(\mathrm{1}/\mathrm{2}\right)\mathrm{r}^{\mathrm{2}} \left[\alpha−\mathrm{sin}\:\alpha\right]}{\mathrm{r}^{\mathrm{2}} \left(\pi−\left(\mathrm{1}/\mathrm{2}\right)\left[\alpha−\mathrm{sin}\:\alpha\right]\right)}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\left(\mathrm{1}/\mathrm{2}\right)\left[\alpha−\mathrm{sin}\:\alpha\right]}{\pi−\left(\mathrm{1}/\mathrm{2}\right)\left[\alpha−\mathrm{sin}\:\alpha\right]}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\alpha−\mathrm{sin}\:\alpha=\pi−\left(\mathrm{1}/\mathrm{2}\right)\left[\alpha−\mathrm{sin}\:\alpha\right] \\ $$$$\mathrm{2}\alpha−\mathrm{2}\:\mathrm{sin}\:\alpha=\mathrm{2}\pi−\alpha+\mathrm{sin}\:\alpha \\ $$$$\mathrm{3}\alpha−\mathrm{3}\:\mathrm{sin}\:\alpha=\mathrm{2}\pi \\ $$$$\alpha−\mathrm{sin}\:\alpha=\frac{\mathrm{2}}{\mathrm{3}}\pi \\ $$$$\mathrm{Now}\:\mathrm{in}\:\bigtriangleup\mathrm{AFB} \\ $$$$\angle\mathrm{AFB}=\pi/\mathrm{2}\:\:\mathrm{rad} \\ $$$$\angle\mathrm{FAB}=\frac{\alpha}{\mathrm{2}}\:\mathrm{rad} \\ $$$$\mathrm{cos}\left(\angle\mathrm{FAB}\right)=\frac{\mathrm{AF}}{\mathrm{AB}}=\frac{\mathrm{AF}}{\mathrm{r}} \\ $$$$\mathrm{AF}=\mathrm{r}\:\mathrm{cos}\left(\alpha/\mathrm{2}\right) \\ $$$$\mathrm{DF}=\mathrm{k}=\mathrm{r}−\mathrm{AF}=\mathrm{r}−\mathrm{r}\:\mathrm{cos}\left(\alpha/\mathrm{2}\right)=\mathrm{r}\left(\mathrm{1}−\mathrm{cos}\frac{\alpha}{\mathrm{2}}\right) \\ $$$$\mathrm{FE}=\mathrm{2r}−\mathrm{k}=\mathrm{2r}−\mathrm{r}\left(\mathrm{1}−\mathrm{cos}\frac{\alpha}{\mathrm{2}}\right)=\mathrm{r}\left(\mathrm{1}+\mathrm{cos}\frac{\alpha}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{DF}}{\mathrm{FE}}=\frac{\mathrm{r}\left(\mathrm{1}−\mathrm{cos}\frac{\alpha}{\mathrm{2}}\right)}{\mathrm{r}\left(\mathrm{1}+\mathrm{cos}\frac{\alpha}{\mathrm{2}}\right)}=\frac{\mathrm{1}−\mathrm{cos}\frac{\alpha}{\mathrm{2}}}{\mathrm{1}+\mathrm{cos}\frac{\alpha}{\mathrm{2}}} \\ $$$$\mathrm{Required}\:\mathrm{ratio}\:\left(\frac{\mathrm{DF}}{\mathrm{FE}}\right)=\frac{\mathrm{1}−\mathrm{cos}\frac{\alpha}{\mathrm{2}}}{\mathrm{1}+\mathrm{cos}\frac{\alpha}{\mathrm{2}}}\:,\mathrm{where}\:\alpha\:\mathrm{is} \\ $$$$\mathrm{such}\:\mathrm{that}\:\:\:\:\alpha−\mathrm{sin}\:\alpha=\frac{\mathrm{2}}{\mathrm{3}}\pi \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com