Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 55674 by gunawan last updated on 01/Mar/19

The smallest integer numbers  with n ≥ 2018 so  ((√3)+3i)^n  form real numbers is..

$$\mathrm{The}\:\mathrm{smallest}\:\mathrm{integer}\:\mathrm{numbers} \\ $$$$\mathrm{with}\:{n}\:\geqslant\:\mathrm{2018}\:\mathrm{so} \\ $$$$\left(\sqrt{\mathrm{3}}+\mathrm{3}{i}\right)^{{n}} \:\mathrm{form}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{is}.. \\ $$

Answered by mr W last updated on 02/Mar/19

((√3)+3i)^n   =(2(√3))^n ((1/2)+((√3)/2)i)^n   =(2(√3))^n (cos (π/3)+i sin (π/3))^n   =(2(√3))^n (cos ((nπ)/3)+i sin ((nπ)/3))  ⇒sin ((nπ)/3)=0  ⇒((nπ)/3)=mπ  ⇒n=3m≥2018  ⇒n_(min) =2019

$$\left(\sqrt{\mathrm{3}}+\mathrm{3}{i}\right)^{{n}} \\ $$$$=\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{i}\right)^{{n}} \\ $$$$=\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{{n}} \left(\mathrm{cos}\:\frac{\pi}{\mathrm{3}}+{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\right)^{{n}} \\ $$$$=\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{{n}} \left(\mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}}+{i}\:\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}}\right) \\ $$$$\Rightarrow\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\frac{{n}\pi}{\mathrm{3}}={m}\pi \\ $$$$\Rightarrow{n}=\mathrm{3}{m}\geqslant\mathrm{2018} \\ $$$$\Rightarrow{n}_{{min}} =\mathrm{2019} \\ $$

Commented by gunawan last updated on 02/Mar/19

Nice thank you Sir

$$\mathrm{Nice}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$

Commented by malwaan last updated on 02/Mar/19

what is the point ?  we can write 2019  without proof   please explane sir

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{point}\:? \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{write}\:\mathrm{2019} \\ $$$$\mathrm{without}\:\mathrm{proof}\: \\ $$$$\mathrm{please}\:\mathrm{explane}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 02/Mar/19

⇒n=3m≥2018  means n must be divisible by 3 and  at least 2018.    a number is divisible by 3 if the  sum of its digits is divisible by 3.    with 2018 the sum of its digits is   2+0+1+8=11, not divisible by 3,  but 2+0+1+9=12, it′s divisible by 3,  therefore n_(min) =2019.

$$\Rightarrow{n}=\mathrm{3}{m}\geqslant\mathrm{2018} \\ $$$${means}\:{n}\:{must}\:{be}\:{divisible}\:{by}\:\mathrm{3}\:{and} \\ $$$${at}\:{least}\:\mathrm{2018}. \\ $$$$ \\ $$$${a}\:{number}\:{is}\:{divisible}\:{by}\:\mathrm{3}\:{if}\:{the} \\ $$$${sum}\:{of}\:{its}\:{digits}\:{is}\:{divisible}\:{by}\:\mathrm{3}. \\ $$$$ \\ $$$${with}\:\mathrm{2018}\:{the}\:{sum}\:{of}\:{its}\:{digits}\:{is}\: \\ $$$$\mathrm{2}+\mathrm{0}+\mathrm{1}+\mathrm{8}=\mathrm{11},\:{not}\:{divisible}\:{by}\:\mathrm{3}, \\ $$$${but}\:\mathrm{2}+\mathrm{0}+\mathrm{1}+\mathrm{9}=\mathrm{12},\:{it}'{s}\:{divisible}\:{by}\:\mathrm{3}, \\ $$$${therefore}\:{n}_{{min}} =\mathrm{2019}. \\ $$

Commented by malwaan last updated on 03/Mar/19

thank you very much sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir} \\ $$

Commented by Kunal12588 last updated on 03/Mar/19

sir i heard this   for checking divisibility with 3  we have to add the digits of the number  special case:− if a digit contains 9  we can drop the 9 and add other digits  eg:− 2019 − 2+0+1=3 which is divisible by 3.  why is this sir?

$${sir}\:{i}\:{heard}\:{this}\: \\ $$$${for}\:{checking}\:{divisibility}\:{with}\:\mathrm{3} \\ $$$${we}\:{have}\:{to}\:{add}\:{the}\:{digits}\:{of}\:{the}\:{number} \\ $$$${special}\:{case}:−\:{if}\:{a}\:{digit}\:{contains}\:\mathrm{9} \\ $$$${we}\:{can}\:{drop}\:{the}\:\mathrm{9}\:{and}\:{add}\:{other}\:{digits} \\ $$$${eg}:−\:\mathrm{2019}\:−\:\mathrm{2}+\mathrm{0}+\mathrm{1}=\mathrm{3}\:{which}\:{is}\:{divisible}\:{by}\:\mathrm{3}. \\ $$$${why}\:{is}\:{this}\:{sir}? \\ $$

Commented by mr W last updated on 03/Mar/19

because digit 9 is already divisibly by 3.  if the sum of other digits is divisible  by 3, then the total sum of all digits is  also divisible by 3 and the number is  divisible by 3.  in fact you can drop not  only digit 9, but also digits 6, 3 and 0,  and only need to add other remaining  digits.  e.g. we take the number  123450906497628005  we only need to add the blue digits:  1+2+4+5+4+7+2+8+5=38 which  is not divisible by 3, therefore the  given number is not divisible by 3.

$${because}\:{digit}\:\mathrm{9}\:{is}\:{already}\:{divisibly}\:{by}\:\mathrm{3}. \\ $$$${if}\:{the}\:{sum}\:{of}\:{other}\:{digits}\:{is}\:{divisible} \\ $$$${by}\:\mathrm{3},\:{then}\:{the}\:{total}\:{sum}\:{of}\:{all}\:{digits}\:{is} \\ $$$${also}\:{divisible}\:{by}\:\mathrm{3}\:{and}\:{the}\:{number}\:{is} \\ $$$${divisible}\:{by}\:\mathrm{3}.\:\:{in}\:{fact}\:{you}\:{can}\:{drop}\:{not} \\ $$$${only}\:{digit}\:\mathrm{9},\:{but}\:{also}\:{digits}\:\mathrm{6},\:\mathrm{3}\:{and}\:\mathrm{0}, \\ $$$${and}\:{only}\:{need}\:{to}\:{add}\:{other}\:{remaining} \\ $$$${digits}. \\ $$$${e}.{g}.\:{we}\:{take}\:{the}\:{number} \\ $$$$\mathrm{123450906497628005} \\ $$$${we}\:{only}\:{need}\:{to}\:{add}\:{the}\:{blue}\:{digits}: \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{5}+\mathrm{4}+\mathrm{7}+\mathrm{2}+\mathrm{8}+\mathrm{5}=\mathrm{38}\:{which} \\ $$$${is}\:{not}\:{divisible}\:{by}\:\mathrm{3},\:{therefore}\:{the} \\ $$$${given}\:{number}\:{is}\:{not}\:{divisible}\:{by}\:\mathrm{3}. \\ $$

Commented by Kunal12588 last updated on 03/Mar/19

great sir. and thanks

$${great}\:{sir}.\:{and}\:{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com