Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 55685 by tm888 last updated on 02/Mar/19

proof that   Σ_(i=1) ^n (a_i /(a_i −x))=2015 has exactly n real   roots.o<a_1 ....<a_n

$${proof}\:{that}\: \\ $$ $$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}}=\mathrm{2015}\:{has}\:{exactly}\:{n}\:{real}\: \\ $$ $${roots}.{o}<{a}_{\mathrm{1}} ....<{a}_{{n}} \\ $$

Answered by mr W last updated on 03/Mar/19

let y=f(x)=Σ_(i=1) ^n (a_i /(a_i −x))  y′=Σ_(i=1) ^n (a_i /((a_i −x)^2 ))>0  ⇒the function is strickly increasing.    lim_(x→a_k ^((−)) ) f(x)=Σ_(i=1) ^n [lim_(x→a_k ^((−)) ) (a_i /(a_i −x))]  =Σ_(i=1,≠k) ^n (a_i /(a_i −a_k ))+lim_(x→a_k ^((−)) ) (a_k /(a_k −x))=+∞  lim_(x→a_k ^((+)) ) f(x)=Σ_(i=1) ^n [lim_(x→a_k ^((+)) ) (a_i /(a_i −x))]  =Σ_(i=1,≠k) ^n (a_i /(a_i −a_k ))+lim_(x→a_k ^((+)) ) (a_k /(a_k −x))=−∞  that means for x∈(a_k ,a_(k+1) ) with k=1,2,...n−1  f(x) is strickly increasing  lim_(x→a_k )  f(x)=lim_(x→a_k ^((+)) ) f(x)=−∞  lim_(x→a_(k+1) )  f(x)=lim_(x→a_(k+1) ^((−)) ) f(x)=+∞  i.e.  f(x)=c has one and only root in (a_k ,a_(k+1) )  with c=any real number, e.g. 2015.    lim_(x→−∞) f(x)=Σ_(i=1) ^n [lim_(x→−∞) (a_i /(a_i −x))]=+0  that means for x∈(−∞,a_1 )  f(x) is strickly increasing  lim_(x→−∞)  f(x)=+0  lim_(x→a_1 )  f(x)=lim_(x→a_1 ^((−)) ) f(x)=+∞  i.e. with c>0, e.g. c=2015  f(x)=c has one and only root in (−∞,a_1 )    lim_(x→+∞) f(x)=Σ_(i=1) ^n [lim_(x→+∞) (a_i /(a_i −x))]=−0  that means for x∈(a_n ,+∞)  f(x) is strickly increasing  lim_(x→a_n )  f(x)=lim_(x→a_1 ^((+)) ) f(x)=−∞  lim_(x→+∞)  f(x)=−0  i.e. with c>0, e.g. c=2015  f(x)=c has no root in (a_n ,+∞)    summary:  f(x)=c>0,e.g. c=2015 has  one and only one root in (−∞,a_1 )  one and only one root in (a_k ,a_(k+1) ) with k=1,2,...,n−1  no root in (a_n ,+∞)  totally f(x)=c has exactly n roots.

$${let}\:{y}={f}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}} \\ $$ $${y}'=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{{i}} }{\left({a}_{{i}} −{x}\right)^{\mathrm{2}} }>\mathrm{0} \\ $$ $$\Rightarrow{the}\:{function}\:{is}\:{strickly}\:{increasing}. \\ $$ $$ \\ $$ $$\underset{{x}\rightarrow{a}_{{k}} ^{\left(−\right)} } {\mathrm{lim}}{f}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\underset{{x}\rightarrow{a}_{{k}} ^{\left(−\right)} } {\mathrm{lim}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}}\right] \\ $$ $$=\underset{{i}=\mathrm{1},\neq{k}} {\overset{{n}} {\sum}}\frac{{a}_{{i}} }{{a}_{{i}} −{a}_{{k}} }+\underset{{x}\rightarrow{a}_{{k}} ^{\left(−\right)} } {\mathrm{lim}}\frac{{a}_{{k}} }{{a}_{{k}} −{x}}=+\infty \\ $$ $$\underset{{x}\rightarrow{a}_{{k}} ^{\left(+\right)} } {\mathrm{lim}}{f}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\underset{{x}\rightarrow{a}_{{k}} ^{\left(+\right)} } {\mathrm{lim}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}}\right] \\ $$ $$=\underset{{i}=\mathrm{1},\neq{k}} {\overset{{n}} {\sum}}\frac{{a}_{{i}} }{{a}_{{i}} −{a}_{{k}} }+\underset{{x}\rightarrow{a}_{{k}} ^{\left(+\right)} } {\mathrm{lim}}\frac{{a}_{{k}} }{{a}_{{k}} −{x}}=−\infty \\ $$ $${that}\:{means}\:{for}\:{x}\in\left({a}_{{k}} ,{a}_{{k}+\mathrm{1}} \right)\:{with}\:{k}=\mathrm{1},\mathrm{2},...{n}−\mathrm{1} \\ $$ $${f}\left({x}\right)\:{is}\:{strickly}\:{increasing} \\ $$ $$\underset{{x}\rightarrow{a}_{{k}} } {\mathrm{lim}}\:{f}\left({x}\right)=\underset{{x}\rightarrow{a}_{{k}} ^{\left(+\right)} } {\mathrm{lim}}{f}\left({x}\right)=−\infty \\ $$ $$\underset{{x}\rightarrow{a}_{{k}+\mathrm{1}} } {\mathrm{lim}}\:{f}\left({x}\right)=\underset{{x}\rightarrow{a}_{{k}+\mathrm{1}} ^{\left(−\right)} } {\mathrm{lim}}{f}\left({x}\right)=+\infty \\ $$ $${i}.{e}.\:\:{f}\left({x}\right)={c}\:{has}\:{one}\:{and}\:{only}\:{root}\:{in}\:\left({a}_{{k}} ,{a}_{{k}+\mathrm{1}} \right) \\ $$ $${with}\:{c}={any}\:{real}\:{number},\:{e}.{g}.\:\mathrm{2015}. \\ $$ $$ \\ $$ $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{f}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}}\right]=+\mathrm{0} \\ $$ $${that}\:{means}\:{for}\:{x}\in\left(−\infty,{a}_{\mathrm{1}} \right) \\ $$ $${f}\left({x}\right)\:{is}\:{strickly}\:{increasing} \\ $$ $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:{f}\left({x}\right)=+\mathrm{0} \\ $$ $$\underset{{x}\rightarrow{a}_{\mathrm{1}} } {\mathrm{lim}}\:{f}\left({x}\right)=\underset{{x}\rightarrow{a}_{\mathrm{1}} ^{\left(−\right)} } {\mathrm{lim}}{f}\left({x}\right)=+\infty \\ $$ $${i}.{e}.\:{with}\:{c}>\mathrm{0},\:{e}.{g}.\:{c}=\mathrm{2015} \\ $$ $${f}\left({x}\right)={c}\:{has}\:{one}\:{and}\:{only}\:{root}\:{in}\:\left(−\infty,{a}_{\mathrm{1}} \right) \\ $$ $$ \\ $$ $$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}}\right]=−\mathrm{0} \\ $$ $${that}\:{means}\:{for}\:{x}\in\left({a}_{{n}} ,+\infty\right) \\ $$ $${f}\left({x}\right)\:{is}\:{strickly}\:{increasing} \\ $$ $$\underset{{x}\rightarrow{a}_{{n}} } {\mathrm{lim}}\:{f}\left({x}\right)=\underset{{x}\rightarrow{a}_{\mathrm{1}} ^{\left(+\right)} } {\mathrm{lim}}{f}\left({x}\right)=−\infty \\ $$ $$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:{f}\left({x}\right)=−\mathrm{0} \\ $$ $${i}.{e}.\:{with}\:{c}>\mathrm{0},\:{e}.{g}.\:{c}=\mathrm{2015} \\ $$ $${f}\left({x}\right)={c}\:{has}\:{no}\:{root}\:{in}\:\left({a}_{{n}} ,+\infty\right) \\ $$ $$ \\ $$ $${summary}: \\ $$ $${f}\left({x}\right)={c}>\mathrm{0},{e}.{g}.\:{c}=\mathrm{2015}\:{has} \\ $$ $${one}\:{and}\:{only}\:{one}\:{root}\:{in}\:\left(−\infty,{a}_{\mathrm{1}} \right) \\ $$ $${one}\:{and}\:{only}\:{one}\:{root}\:{in}\:\left({a}_{{k}} ,{a}_{{k}+\mathrm{1}} \right)\:{with}\:{k}=\mathrm{1},\mathrm{2},...,{n}−\mathrm{1} \\ $$ $${no}\:{root}\:{in}\:\left({a}_{{n}} ,+\infty\right) \\ $$ $${totally}\:{f}\left({x}\right)={c}\:{has}\:{exactly}\:{n}\:{roots}. \\ $$

Commented byotchereabdullai@gmail.com last updated on 03/Mar/19

The great and ideal professor W

$$\mathrm{The}\:\mathrm{great}\:\mathrm{and}\:\mathrm{ideal}\:\mathrm{professor}\:\mathrm{W} \\ $$

Commented bymr W last updated on 03/Mar/19

Commented bymr W last updated on 03/Mar/19

we can see  f(x)=Σ_(i=1) ^n (a_i /(a_i −x))=0 has exactly n−1 roots and  f(x)=Σ_(i=1) ^n (a_i /(a_i −x))=c≠0 has exactly n roots.

$${we}\:{can}\:{see} \\ $$ $${f}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}}=\mathrm{0}\:{has}\:{exactly}\:{n}−\mathrm{1}\:{roots}\:{and} \\ $$ $${f}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{{i}} }{{a}_{{i}} −{x}}={c}\neq\mathrm{0}\:{has}\:{exactly}\:{n}\:{roots}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com