Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 55704 by gunawan last updated on 03/Mar/19

Prove that:  2 sin (1/2)θcos (3/2)θ+2sin (5/2)θ   +2 sin (3/2)θ+2sin (3/2)θcos (7/2)θ  =sin 4θ+sin 5θ

Provethat:2sin12θcos32θ+2sin52θ+2sin32θ+2sin32θcos72θ=sin4θ+sin5θ

Answered by Kunal12588 last updated on 03/Mar/19

2sin(1/2)θ cos(3/2)θ +2 sin(5/2)θ + 2sin (3/2)θ + 2sin(3/2)θ cos(7/2)θ  =sin((3θ+θ)/2)−sin((3θ−θ)/2)+2(sin(5/2)θ+sin(3/2)θ)+sin((3θ+7θ)/2)−sin((7θ−3θ)/2)  =sin2θ−sinθ+sin5θ−sin2θ+4sin(((5θ+3θ)/2)/2)cos(((5θ−3θ)/2)/2)  =sin5θ−sinθ+4sin2θcos(θ/2)  so if we can prove −sinθ+4sin2θcos(θ/2)=sin4θ  we can prove the given question

2sin12θcos32θ+2sin52θ+2sin32θ+2sin32θcos72θ=sin3θ+θ2sin3θθ2+2(sin52θ+sin32θ)+sin3θ+7θ2sin7θ3θ2=sin2θsinθ+sin5θsin2θ+4sin(5θ+3θ)/22cos(5θ3θ)/22=sin5θsinθ+4sin2θcosθ2soifwecanprovesinθ+4sin2θcosθ2=sin4θwecanprovethegivenquestion

Commented by Kunal12588 last updated on 03/Mar/19

lets take θ=(π/3)  sin4θ=sin((4π)/3)=sin(π+(π/3))=−sin(π/3)=−((√3)/2)  −sinθ+4sin2θcos(θ/2)  =−sin(π/3)+4sin((2π)/3)cos(π/6)  =−((√3)/2)+4sin(π−(π/3))×((√3)/2)  =((−(√3))/2)+4sin(π/3)×((√3)/2)=((−(√3))/2)+4×((√3)/2)×((√3)/2)  =3−((√3)/2) ≠−((√3)/2)  ∴−sinθ+4sin2θcos(θ/2)≠sin4θ for θ=(π/3)  so we can not prove the given question.  please Recheck the question

letstakeθ=π3sin4θ=sin4π3=sin(π+π3)=sinπ3=32sinθ+4sin2θcosθ2=sinπ3+4sin2π3cosπ6=32+4sin(ππ3)×32=32+4sinπ3×32=32+4×32×32=33232sinθ+4sin2θcosθ2sin4θforθ=π3sowecannotprovethegivenquestion.pleaseRecheckthequestion

Terms of Service

Privacy Policy

Contact: info@tinkutara.com