All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 55704 by gunawan last updated on 03/Mar/19
Provethat:2sin12θcos32θ+2sin52θ+2sin32θ+2sin32θcos72θ=sin4θ+sin5θ
Answered by Kunal12588 last updated on 03/Mar/19
2sin12θcos32θ+2sin52θ+2sin32θ+2sin32θcos72θ=sin3θ+θ2−sin3θ−θ2+2(sin52θ+sin32θ)+sin3θ+7θ2−sin7θ−3θ2=sin2θ−sinθ+sin5θ−sin2θ+4sin(5θ+3θ)/22cos(5θ−3θ)/22=sin5θ−sinθ+4sin2θcosθ2soifwecanprove−sinθ+4sin2θcosθ2=sin4θwecanprovethegivenquestion
Commented by Kunal12588 last updated on 03/Mar/19
letstakeθ=π3sin4θ=sin4π3=sin(π+π3)=−sinπ3=−32−sinθ+4sin2θcosθ2=−sinπ3+4sin2π3cosπ6=−32+4sin(π−π3)×32=−32+4sinπ3×32=−32+4×32×32=3−32≠−32∴−sinθ+4sin2θcosθ2≠sin4θforθ=π3sowecannotprovethegivenquestion.pleaseRecheckthequestion
Terms of Service
Privacy Policy
Contact: info@tinkutara.com