Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55760 by maxmathsup by imad last updated on 03/Mar/19

let f(x) =∫_0 ^∞     ((cos(xt))/((xt^2 +i)^2 ))dx   with x from R  and x≠0  1) find a explicit form of f(x)  2) extract  A =Re(f(x)) and  B =Im(f(x)) and find its values .  3) calculate ∫_0 ^∞    ((cos(2t))/((2t^2  +i)^2 ))dt  4) let U_n =∫_0 ^∞   ((cos(nt))/((nt^2  +i)^2 ))dt   .calculate lim_(n→+∞)  u_n   and study the convergence of Σu_n

letf(x)=0cos(xt)(xt2+i)2dxwithxfromRandx01)findaexplicitformoff(x)2)extractA=Re(f(x))andB=Im(f(x))andfinditsvalues.3)calculate0cos(2t)(2t2+i)2dt4)letUn=0cos(nt)(nt2+i)2dt.calculatelimn+unandstudytheconvergenceofΣun

Commented by maxmathsup by imad last updated on 04/Mar/19

i^2 =−1

i2=1

Commented by maxmathsup by imad last updated on 04/Mar/19

f(x)=∫_0 ^∞ ((cos(xt))/((xt^2 +i)^2 ))dt

f(x)=0cos(xt)(xt2+i)2dt

Commented by maxmathsup by imad last updated on 10/Mar/19

case 1   x>0  changement xt =u  give f(x)=∫_0 ^∞   ((cosu)/((x(u^2 /x^2 )+i)^2 ))(du/x)  =(1/x)∫_0 ^∞   ((cosu)/(((u^2 /x)+i)^2 )) =x∫_0 ^∞    ((cosu)/((u^2  +ix)^2 )) du=x ∫_0 ^∞  (((u^2 −ix)^2 cosu)/((u^4 +x^2 )^2 ))du  =x ∫_0 ^∞  (((u^2 −2ix u^2 −x^2 )cosu)/((u^4  +x^2 )^2 )) du  =x ∫_0 ^∞   (((u^2 −x^2 )cosu)/((u^4  +x^2 )^2 ))du −2ix^2  ∫_0 ^∞   ((u^2 cosu)/((u^4  +x^2 )^2 )) ⇒Re(f(x))=x∫_0 ^∞  (((u^2 −x^2 )cosu)/((u^4  +x^2 )^2 ))du =I  and Im(f(x)) =−2x^2  ∫_0 ^∞   ((u^2 cosu)/((u^4  +x^2 ))) du  let find  I   we have   2I =x ∫_(−∞) ^(+∞)   (((u^2 −x^2 )cosu)/((u^4  +x^2 )^2 )) du =x Re(∫_(−∞) ^(+∞)  (((u^2 −x^2 )e^(iu) )/((u^4  +x^2 )^2 )) du)  let ϕ(z) =(((z^2 −x^2 )e^(iz) )/((z^4  +x^2 )^2 ))   ⇒ϕ(z) =(((z^2 −x^2 )e^(iz) )/((z^2 −ix)^2 (z^2 +ix)^2 ))  =(((z^2 −x^2 )e^(iz) )/((z−(√x)e^(i(π/4)) )^2 (z+(√x)e^((iπ)/4) )^2 (z−(√x)e^(−((iπ)/4)) )^2 (z+(√x)e^(−((iπ)/4)) )^2 ))  so the poles of ϕ are  +^− (√x)e^((iπ)/4)    and +^− (√x)e^(−((iπ)/4))   (double poles)  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,(√x)e^((iπ)/4) ) +Res(ϕ,−(√x)e^(−((iπ)/4)) )}  Res(ϕ, (√x)e^((iπ)/4) ) =lim_(z→(√x)e^((iπ)/4) )  (1/((2−1)!))   {(z−(√x)e^((iπ)/4) )^2 ϕ(z)}^((1))   =lim_(z→(√x)e^((iπ)/4) )    {  (((z^2 −x^2 )e^(iz) )/((z +(√x)e^((iπ)/4) )^2 (z^2  +ix)^2 ))}^((1))  ....be continued...  mim

case1x>0changementxt=ugivef(x)=0cosu(xu2x2+i)2dux=1x0cosu(u2x+i)2=x0cosu(u2+ix)2du=x0(u2ix)2cosu(u4+x2)2du=x0(u22ixu2x2)cosu(u4+x2)2du=x0(u2x2)cosu(u4+x2)2du2ix20u2cosu(u4+x2)2Re(f(x))=x0(u2x2)cosu(u4+x2)2du=IandIm(f(x))=2x20u2cosu(u4+x2)duletfindIwehave2I=x+(u2x2)cosu(u4+x2)2du=xRe(+(u2x2)eiu(u4+x2)2du)letφ(z)=(z2x2)eiz(z4+x2)2φ(z)=(z2x2)eiz(z2ix)2(z2+ix)2=(z2x2)eiz(zxeiπ4)2(z+xeiπ4)2(zxeiπ4)2(z+xeiπ4)2sothepolesofφare+xeiπ4and+xeiπ4(doublepoles)residustheoremgive+φ(z)dz=2iπ{Res(φ,xeiπ4)+Res(φ,xeiπ4)}Res(φ,xeiπ4)=limzxeiπ41(21)!{(zxeiπ4)2φ(z)}(1)=limzxeiπ4{(z2x2)eiz(z+xeiπ4)2(z2+ix)2}(1)....becontinued...mim

Terms of Service

Privacy Policy

Contact: info@tinkutara.com