Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 55787 by gunawan last updated on 04/Mar/19

The remainder when 5^(99) is divided by 13 is

Theremainderwhen599isdividedby13is

Answered by MJS last updated on 04/Mar/19

remainders of (5^n /(13))  n=1+4k: 5  n=2+4k: 12  n=3+4k: 8  n=4+4k: 3  99=3+4×24 ⇒ remainder is 8

remaindersof5n13n=1+4k:5n=2+4k:12n=3+4k:8n=4+4k:399=3+4×24remainderis8

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19

trying other way  5^(99)   =(5^3 )^(33)   =(125)^(33)   =(9×13+8)^(33)   =(9×13)^(33) +33c_1 (9×13)^(32) ×8+...+8^(33)   =f(13)+(512)^(11)   =f(13)+(13×39+5)^(11)   =f(13)+g(13)+5^(11)   =f(13+g(13)+5×(5^2 )^5   =f(13)+g(13)+5×(13+12)^5   =f(13)+g(13)+5×[13^5 +5c_1 13^4 +...+12^5 ]  =f(13)+g(13)+5×h(13)+5×12^5   =f(13)+g(13)+5×h(13)+5×(144)^3   =f(13)+g(13)+5×h(13)+5×(13×11+1)^3   =f(13)+g(13)+5×h(13)+5×[(13×11)^3 +3×(13×11)^2 +3×(13×11)×1^2 +1^3 ]  =f(13)+g(13)+5×h(13)+5×γ(13)+5×1^3   so in my calculation remaider is 5

tryingotherway599=(53)33=(125)33=(9×13+8)33=(9×13)33+33c1(9×13)32×8+...+833=f(13)+(512)11=f(13)+(13×39+5)11=f(13)+g(13)+511=f(13+g(13)+5×(52)5=f(13)+g(13)+5×(13+12)5=f(13)+g(13)+5×[135+5c1134+...+125]=f(13)+g(13)+5×h(13)+5×125=f(13)+g(13)+5×h(13)+5×(144)3=f(13)+g(13)+5×h(13)+5×(13×11+1)3=f(13)+g(13)+5×h(13)+5×[(13×11)3+3×(13×11)2+3×(13×11)×12+13]=f(13)+g(13)+5×h(13)+5×γ(13)+5×13soinmycalculationremaideris5

Commented by mr W last updated on 05/Mar/19

here is wrong sir!  =f(13)+g(13)+5×h(13)+5×12^5   =f(13)+g(13)+5×h(13)+5×(144)^3   it should be:  =f(13)+g(13)+5×h(13)+5×12×(144)^2   =f(13)+g(13)+5×h(13)+60×(13×11+1)^2   =......+60  =......+13×4+8  =......+8  ⇒remainder is 8.

hereiswrongsir!=f(13)+g(13)+5×h(13)+5×125=f(13)+g(13)+5×h(13)+5×(144)3itshouldbe:=f(13)+g(13)+5×h(13)+5×12×(144)2=f(13)+g(13)+5×h(13)+60×(13×11+1)2=......+60=......+13×4+8=......+8remainderis8.

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Mar/19

thank you sir..many many thanks...

thankyousir..manymanythanks...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com