Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 55788 by gunawan last updated on 04/Mar/19

The sum of the last eight coefficients in  the expansion of (1+x)^(16)  is 2^(15)  .

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{eight}\:\mathrm{coefficients}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+{x}\right)^{\mathrm{16}} \:\mathrm{is}\:\mathrm{2}^{\mathrm{15}} \:. \\ $$

Commented by gunawan last updated on 04/Mar/19

True or false

$$\mathrm{True}\:\mathrm{or}\:\mathrm{false} \\ $$

Commented by maxmathsup by imad last updated on 04/Mar/19

we have (x+1)^(16)  =Σ_(k=0) ^(16)  C_(16) ^k  x^k  =Σ_(k=0) ^(16)  a_k x^k  ⇒  a_0 +a_1 +....+a_7  =Σ_(k=0) ^7  C_(16) ^k    but if  p(x)=a_0 +a_1 x +a_2 x^2  +...+a_n x^n  ⇒  a_o  +a_1 +....+a_n =p(1) and a_o  +a_1 +...+a_p =p(1)−a_(p+1) −a_(p+2) −...−a_n  in this case  p(x)=(x+1)^(16)  ⇒a_0  +a_1 +...+a_7 =p(1)−a_8 −a_9 −....−a_(16)   but a_8 =C_(16) ^8      a_9 =C_(16) ^9 =C_(16) ^7 =a_7   ,  a_(10) =C_(16) ^(10)  =C_(16) ^6  =a_6  ,  a_(16) =a_0   2(a_0  +a_1 +....+a_7 ) =p(1)−a_8 =2^(16)  −C_(16) ^8  =2^(16) −((16!)/(8!8!))  =2^(16) −((16!)/((8!)^2 ))

$${we}\:{have}\:\left({x}+\mathrm{1}\right)^{\mathrm{16}} \:=\sum_{{k}=\mathrm{0}} ^{\mathrm{16}} \:{C}_{\mathrm{16}} ^{{k}} \:{x}^{{k}} \:=\sum_{{k}=\mathrm{0}} ^{\mathrm{16}} \:{a}_{{k}} {x}^{{k}} \:\Rightarrow \\ $$$${a}_{\mathrm{0}} +{a}_{\mathrm{1}} +....+{a}_{\mathrm{7}} \:=\sum_{{k}=\mathrm{0}} ^{\mathrm{7}} \:{C}_{\mathrm{16}} ^{{k}} \:\:\:{but}\:{if}\:\:{p}\left({x}\right)={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}\:+{a}_{\mathrm{2}} {x}^{\mathrm{2}} \:+...+{a}_{{n}} {x}^{{n}} \:\Rightarrow \\ $$$${a}_{{o}} \:+{a}_{\mathrm{1}} +....+{a}_{{n}} ={p}\left(\mathrm{1}\right)\:{and}\:{a}_{{o}} \:+{a}_{\mathrm{1}} +...+{a}_{{p}} ={p}\left(\mathrm{1}\right)−{a}_{{p}+\mathrm{1}} −{a}_{{p}+\mathrm{2}} −...−{a}_{{n}} \:{in}\:{this}\:{case} \\ $$$${p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{\mathrm{16}} \:\Rightarrow{a}_{\mathrm{0}} \:+{a}_{\mathrm{1}} +...+{a}_{\mathrm{7}} ={p}\left(\mathrm{1}\right)−{a}_{\mathrm{8}} −{a}_{\mathrm{9}} −....−{a}_{\mathrm{16}} \\ $$$${but}\:{a}_{\mathrm{8}} ={C}_{\mathrm{16}} ^{\mathrm{8}} \:\:\:\:\:{a}_{\mathrm{9}} ={C}_{\mathrm{16}} ^{\mathrm{9}} ={C}_{\mathrm{16}} ^{\mathrm{7}} ={a}_{\mathrm{7}} \:\:,\:\:{a}_{\mathrm{10}} ={C}_{\mathrm{16}} ^{\mathrm{10}} \:={C}_{\mathrm{16}} ^{\mathrm{6}} \:={a}_{\mathrm{6}} \:,\:\:{a}_{\mathrm{16}} ={a}_{\mathrm{0}} \\ $$$$\mathrm{2}\left({a}_{\mathrm{0}} \:+{a}_{\mathrm{1}} +....+{a}_{\mathrm{7}} \right)\:={p}\left(\mathrm{1}\right)−{a}_{\mathrm{8}} =\mathrm{2}^{\mathrm{16}} \:−{C}_{\mathrm{16}} ^{\mathrm{8}} \:=\mathrm{2}^{\mathrm{16}} −\frac{\mathrm{16}!}{\mathrm{8}!\mathrm{8}!} \\ $$$$=\mathrm{2}^{\mathrm{16}} −\frac{\mathrm{16}!}{\left(\mathrm{8}!\right)^{\mathrm{2}} } \\ $$

Commented by maxmathsup by imad last updated on 04/Mar/19

⇒a_0 +a_1 +....+a_7 =2^(15) −(1/2) ((16!)/((8!)^2 ))

$$\Rightarrow{a}_{\mathrm{0}} +{a}_{\mathrm{1}} +....+{a}_{\mathrm{7}} =\mathrm{2}^{\mathrm{15}} −\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{16}!}{\left(\mathrm{8}!\right)^{\mathrm{2}} } \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19

total terms=16+1=17  sum of coeffucients  (1+x)^(16) =1+16c_1 x+16c_2 x^2 +16c_3 x^3 +..+16c_(16) x^(16)   2^(16) =16c_0 +16c_1 +...+16c_8 +16c_9 +16c_(10) +..+16c_(16)   we have ti find the value of   16c_(16) +16c_(15) +16c_(14) +16c_(13) +16c_(12) +16c_(11) +16c_(10) +16c_9 =k  again  16c_0 +16c_1 +16c_2 +16c_3 +16c_4 +16c_5 +16c_6 +16c_7 =k  [since nc_r =nc_(n−r) ]  now  ninth term is 16c_8 x^8 →coeeficient=16c_8   so 2k+16c_8 =2^(16)   2k=2^(16) −((16!)/(8!8!))  k=2^(15) −(1/2)(((16!)/(8!8!)))  required ans is2^(15) −(1/2)(((16!)/(8!8!)))  pls check...

$${total}\:{terms}=\mathrm{16}+\mathrm{1}=\mathrm{17} \\ $$$${sum}\:{of}\:{coeffucients} \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{16}} =\mathrm{1}+\mathrm{16}{c}_{\mathrm{1}} {x}+\mathrm{16}{c}_{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{16}{c}_{\mathrm{3}} {x}^{\mathrm{3}} +..+\mathrm{16}{c}_{\mathrm{16}} {x}^{\mathrm{16}} \\ $$$$\mathrm{2}^{\mathrm{16}} =\mathrm{16}{c}_{\mathrm{0}} +\mathrm{16}{c}_{\mathrm{1}} +...+\mathrm{16}{c}_{\mathrm{8}} +\mathrm{16}{c}_{\mathrm{9}} +\mathrm{16}{c}_{\mathrm{10}} +..+\mathrm{16}{c}_{\mathrm{16}} \\ $$$${we}\:{have}\:{ti}\:{find}\:{the}\:{value}\:{of}\: \\ $$$$\mathrm{16}{c}_{\mathrm{16}} +\mathrm{16}{c}_{\mathrm{15}} +\mathrm{16}{c}_{\mathrm{14}} +\mathrm{16}{c}_{\mathrm{13}} +\mathrm{16}{c}_{\mathrm{12}} +\mathrm{16}{c}_{\mathrm{11}} +\mathrm{16}{c}_{\mathrm{10}} +\mathrm{16}{c}_{\mathrm{9}} ={k} \\ $$$${again} \\ $$$$\mathrm{16}{c}_{\mathrm{0}} +\mathrm{16}{c}_{\mathrm{1}} +\mathrm{16}{c}_{\mathrm{2}} +\mathrm{16}{c}_{\mathrm{3}} +\mathrm{16}{c}_{\mathrm{4}} +\mathrm{16}{c}_{\mathrm{5}} +\mathrm{16}{c}_{\mathrm{6}} +\mathrm{16}{c}_{\mathrm{7}} ={k} \\ $$$$\left[{since}\:{nc}_{{r}} ={nc}_{{n}−{r}} \right] \\ $$$${now} \\ $$$${ninth}\:{term}\:{is}\:\mathrm{16}{c}_{\mathrm{8}} {x}^{\mathrm{8}} \rightarrow{coeeficient}=\mathrm{16}{c}_{\mathrm{8}} \\ $$$${so}\:\mathrm{2}{k}+\mathrm{16}{c}_{\mathrm{8}} =\mathrm{2}^{\mathrm{16}} \\ $$$$\mathrm{2}{k}=\mathrm{2}^{\mathrm{16}} −\frac{\mathrm{16}!}{\mathrm{8}!\mathrm{8}!} \\ $$$${k}=\mathrm{2}^{\mathrm{15}} −\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{16}!}{\mathrm{8}!\mathrm{8}!}\right) \\ $$$${required}\:{ans}\:{is}\mathrm{2}^{\mathrm{15}} −\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{16}!}{\mathrm{8}!\mathrm{8}!}\right) \\ $$$${pls}\:{check}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com