Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 55856 by Joel578 last updated on 05/Mar/19

For what values of p the integral  ∫_0 ^1  x^p  ln x dx  converge?

$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:{p}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{p}} \:\mathrm{ln}\:{x}\:{dx} \\ $$$$\mathrm{converge}? \\ $$

Commented by maxmathsup by imad last updated on 05/Mar/19

let  A_p =∫_0 ^1   x^p ln(x)dx  changement ln(x)=−t give  x =e^(−t)   A_p =−∫_0 ^∞ (e^(−t) )^p  (t) e^(−t)  dt =−∫_0 ^∞   t e^(−(p+1)t) dt  if p>−1   A_p  converges    if p≤−1   lim_(t→+∞) t e^(−(p+1)t)  =+∞ ⇒A_p diverges

$${let}\:\:{A}_{{p}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{p}} {ln}\left({x}\right){dx}\:\:{changement}\:{ln}\left({x}\right)=−{t}\:{give}\:\:{x}\:={e}^{−{t}} \\ $$$${A}_{{p}} =−\int_{\mathrm{0}} ^{\infty} \left({e}^{−{t}} \right)^{{p}} \:\left({t}\right)\:{e}^{−{t}} \:{dt}\:=−\int_{\mathrm{0}} ^{\infty} \:\:{t}\:{e}^{−\left({p}+\mathrm{1}\right){t}} {dt} \\ $$$${if}\:{p}>−\mathrm{1}\:\:\:{A}_{{p}} \:{converges}\:\:\:\:{if}\:{p}\leqslant−\mathrm{1}\:\:\:{lim}_{{t}\rightarrow+\infty} {t}\:{e}^{−\left({p}+\mathrm{1}\right){t}} \:=+\infty\:\Rightarrow{A}_{{p}} {diverges} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Mar/19

lnx×(x^(p+1) /(p+1))−∫(1/x)×(x^(p+1) /(p+1))dx  ∣((x^(p+1) lnx)/(p+1))−(1/(p+1))×(x^(p+1) /(p+1))∣_0 ^1   =((1×0)/(p+1))−(1/((p+1)^2 ))  =((−1)/((p+1)^2 ))    p≠−1  so i think value of p is R−{−1}   pls check

$${lnx}×\frac{{x}^{{p}+\mathrm{1}} }{{p}+\mathrm{1}}−\int\frac{\mathrm{1}}{{x}}×\frac{{x}^{{p}+\mathrm{1}} }{{p}+\mathrm{1}}{dx} \\ $$$$\mid\frac{{x}^{{p}+\mathrm{1}} {lnx}}{{p}+\mathrm{1}}−\frac{\mathrm{1}}{{p}+\mathrm{1}}×\frac{{x}^{{p}+\mathrm{1}} }{{p}+\mathrm{1}}\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}×\mathrm{0}}{{p}+\mathrm{1}}−\frac{\mathrm{1}}{\left({p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{−\mathrm{1}}{\left({p}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\:\:{p}\neq−\mathrm{1} \\ $$$${so}\:{i}\:{think}\:{value}\:{of}\:{p}\:{is}\:{R}−\left\{−\mathrm{1}\right\}\:\:\:{pls}\:{check} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Mar/19

thank you sir...is my answer correct...

$${thank}\:{you}\:{sir}...{is}\:{my}\:{answer}\:{correct}... \\ $$

Commented by Joel578 last updated on 05/Mar/19

Sir I think p should be ≤ −1  I =lim_(t→0^+ )  [((x^(p+1) (ln x))/(p + 1)) − (x^(p+1) /((p + 1)^2 ))]_t ^1   ⇒ lim_(t→0^+ )  {(0 − (1/((p + 1)^2 ))) − (((t^(p+1) (ln t))/(p + 1)) − (t^(p+1) /((p + 1)^2 )))}  ⇒ − (1/((p + 1)^2 )) − lim_(t→0^+ )  {(t^(p+1) /(p + 1))(ln t − (1/(p + 1)))}  when p + 1 = 0 ⇔ p = −1, I diverge  when p + 1 < 0 ⇔ p < − 1, (p + 1) is negative,  which mean   t^(p+1)  → ∞  as  t → 0^+ .   Hence I = −(1/((p + 1)^2 )) − ∞ = −∞ (diverge)

$$\mathrm{Sir}\:\mathrm{I}\:\mathrm{think}\:{p}\:\mathrm{should}\:\mathrm{be}\:\leqslant\:−\mathrm{1} \\ $$$${I}\:=\underset{{t}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left[\frac{{x}^{{p}+\mathrm{1}} \left(\mathrm{ln}\:{x}\right)}{{p}\:+\:\mathrm{1}}\:−\:\frac{{x}^{{p}+\mathrm{1}} }{\left({p}\:+\:\mathrm{1}\right)^{\mathrm{2}} }\right]_{{t}} ^{\mathrm{1}} \\ $$$$\Rightarrow\:\underset{{t}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left\{\left(\mathrm{0}\:−\:\frac{\mathrm{1}}{\left({p}\:+\:\mathrm{1}\right)^{\mathrm{2}} }\right)\:−\:\left(\frac{{t}^{{p}+\mathrm{1}} \left(\mathrm{ln}\:{t}\right)}{{p}\:+\:\mathrm{1}}\:−\:\frac{{t}^{{p}+\mathrm{1}} }{\left({p}\:+\:\mathrm{1}\right)^{\mathrm{2}} }\right)\right\} \\ $$$$\Rightarrow\:−\:\frac{\mathrm{1}}{\left({p}\:+\:\mathrm{1}\right)^{\mathrm{2}} }\:−\:\underset{{t}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left\{\frac{{t}^{{p}+\mathrm{1}} }{{p}\:+\:\mathrm{1}}\left(\mathrm{ln}\:{t}\:−\:\frac{\mathrm{1}}{{p}\:+\:\mathrm{1}}\right)\right\} \\ $$$$\mathrm{when}\:{p}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\Leftrightarrow\:{p}\:=\:−\mathrm{1},\:{I}\:\mathrm{diverge} \\ $$$$\mathrm{when}\:{p}\:+\:\mathrm{1}\:<\:\mathrm{0}\:\Leftrightarrow\:{p}\:<\:−\:\mathrm{1},\:\left({p}\:+\:\mathrm{1}\right)\:\mathrm{is}\:\mathrm{negative}, \\ $$$$\mathrm{which}\:\mathrm{mean}\:\:\:{t}^{{p}+\mathrm{1}} \:\rightarrow\:\infty\:\:\mathrm{as}\:\:{t}\:\rightarrow\:\mathrm{0}^{+} .\: \\ $$$$\mathrm{Hence}\:{I}\:=\:−\frac{\mathrm{1}}{\left({p}\:+\:\mathrm{1}\right)^{\mathrm{2}} }\:−\:\infty\:=\:−\infty\:\left(\mathrm{diverge}\right) \\ $$

Commented by Joel578 last updated on 05/Mar/19

please correct if I am wrong

$$\mathrm{please}\:\mathrm{correct}\:\mathrm{if}\:\mathrm{I}\:\mathrm{am}\:\mathrm{wrong} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com