Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 55887 by behi83417@gmail.com last updated on 05/Mar/19

   a^2 +1=b^2      b^2 +c^2 =b^4      ab=c      solve for :   a, b, c.

a2+1=b2b2+c2=b4ab=csolvefor:a,b,c.

Answered by MJS last updated on 05/Mar/19

b^2 =a^2 +1 ⇒ (a^2 +1)^2 −(a^2 +1)−c^2 =0       a^4 +a^2 −c^2 =0  c=ab ⇒ a^4 +a^2 −a^2 (a^2 +1)=0 true for a∈R  ⇒ a∈R ∧ b=±(√(a^2 +1)) ∧ c=±a(√(a^2 +1))

b2=a2+1(a2+1)2(a2+1)c2=0a4+a2c2=0c=aba4+a2a2(a2+1)=0trueforaRaRb=±a2+1c=±aa2+1

Answered by JDamian last updated on 06/Mar/19

    As the 2nd. and the  3rd. expressions  combined  are the first; the only one to solve is:  a^2 +1=b^2   ⇒ b=±(√(a^2 +1))  ⇒  c=±a(√(a^2 +1))

Asthe2nd.andthe3rd.expressionscombinedarethefirst;theonlyonetosolveis:a2+1=b2b=±a2+1c=±aa2+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com