Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 55904 by gunawan last updated on 06/Mar/19

Let a_i >0, ∀_i =1, 2, 3, …2016  If (a_1 a_2 …a_(2016) )^(1/(2016)) =2  then  (1+a_1 )(1+a_2 )…(1+a_(2016) )≥...

Letai>0,i=1,2,3,2016 If(a1a2a2016)12016=2 then (1+a1)(1+a2)(1+a2016)...

Answered by mr W last updated on 06/Mar/19

for a,b>0 we have ((a+b)/2)≥(√(ab))  (1+a_1 )(1+a_2 )…(1+a_(2016) )  ≥2(√a_1 )×2(√a_2 )×...×2(√a_(2016) )  =2^(2016) (√(a_1 a_2 ...a_(2016) ))  =2^(2016) (2^(2016) )^(1/2)   =2^(2016) 2^(1008)   =2^(3024)

fora,b>0wehavea+b2ab (1+a1)(1+a2)(1+a2016) 2a1×2a2×...×2a2016 =22016a1a2...a2016 =22016(22016)12 =2201621008 =23024

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Mar/19

a_1 a_2 a_3 ...a_n =2^n   n=2016  ((1+a_1 )/2)≥(√(1×a_1 ))   (1+a_1 )(1+a_2 )...(1+a_n )≤2^ ×(a_1 )^(1/2) ×2(a_2 )^(1/2) ..2×(a_n )^(1/n)   do≥2^n (a_1 a_2 ...a_n )^(1/2)   do≥2^n (2^n )^(1/2)   d0≥2^(n+(n/2))   so required answer is 2^(2016+1008)   (1+a_1 )(1+a_2 )...(1+a_(2016) )≥2^(3024)

a1a2a3...an=2n n=2016 1+a121×a1 (1+a1)(1+a2)...(1+an)2×(a1)12×2(a2)12..2×(an)1n do2n(a1a2...an)12 do2n(2n)12 d02n+n2 sorequiredansweris22016+1008 (1+a1)(1+a2)...(1+a2016)23024

Terms of Service

Privacy Policy

Contact: info@tinkutara.com