Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 55907 by gunawan last updated on 06/Mar/19

for every n ∈ N , f_n (x)=nx(1−x^2 )^n ,  for every x, 0≤x≤1  and a_n =∫_0 ^1 f_n (x) dx.  If S_n =sin (πa_n ), for every  n∈ N, then lim_(n→∞)  s_n =...

$$\mathrm{for}\:\mathrm{every}\:{n}\:\in\:\mathbb{N}\:,\:{f}_{{n}} \left({x}\right)={nx}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} , \\ $$$$\mathrm{for}\:\mathrm{every}\:{x},\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1} \\ $$$$\mathrm{and}\:{a}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({x}\right)\:{dx}. \\ $$$$\mathrm{If}\:\mathrm{S}_{\mathrm{n}} =\mathrm{sin}\:\left(\pi{a}_{{n}} \right),\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{n}\in\:\mathbb{N},\:\mathrm{then}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{s}_{\mathrm{n}} =... \\ $$

Commented by maxmathsup by imad last updated on 06/Mar/19

we have a_n =∫_0 ^1 nx(1−x^2 )^n dx ⇒πa_n =nπ ∫_0 ^1 x(1−x^2 )^n dx  but  ∫_0 ^1 x(1−x^2 )^n  dx =−(1/(2(n+1)))[(1−x^2 )^(n+1) ]_0 ^1  =(1/(2n+2)) ⇒πa_n =((nπ)/(2n+2))  =((nπ)/(2n(1+(1/n)))) =(π/(2(1+(1/n)))) ∼(π/2)(1−(1/n)) (n→+∞ ⇒sin(πa_n )∼sin((π/2)−(π/(2n)))  ⇒lim_(n→+∞) S_n =sin((π/2)) =1 .

$${we}\:{have}\:{a}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {nx}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx}\:\Rightarrow\pi{a}_{{n}} ={n}\pi\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx}\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} \:{dx}\:=−\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\left[\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{2}}\:\Rightarrow\pi{a}_{{n}} =\frac{{n}\pi}{\mathrm{2}{n}+\mathrm{2}} \\ $$$$=\frac{{n}\pi}{\mathrm{2}{n}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)}\:=\frac{\pi}{\mathrm{2}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)}\:\sim\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\right)\:\left({n}\rightarrow+\infty\:\Rightarrow{sin}\left(\pi{a}_{{n}} \right)\sim{sin}\left(\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{2}{n}}\right)\right. \\ $$$$\Rightarrow{lim}_{{n}\rightarrow+\infty} {S}_{{n}} ={sin}\left(\frac{\pi}{\mathrm{2}}\right)\:=\mathrm{1}\:. \\ $$$$ \\ $$

Answered by 121194 last updated on 06/Mar/19

a_n =∫_0 ^1 nx(1−x^2 )^n dx  y=1−x^2 ⇒dy=−2xdx⇒xdx=−(dy/2)  x=0⇒y=1  x=1⇒y=0  a_n =n∫_0 ^1 (1−x^2 )^n xdx=−(n/2)∫_1 ^0 y^n dy=(n/2)∫_0 ^1 y^n dy  =(n/(2(n+1)))  lim_(n→∞) sin [((πn)/(2(n+1)))]=sin ((π/2)lim_(n→∞) (n/(n+1)))=sin (π/2)=1

$${a}_{{n}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{nx}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx} \\ $$$${y}=\mathrm{1}−{x}^{\mathrm{2}} \Rightarrow{dy}=−\mathrm{2}{xdx}\Rightarrow{xdx}=−\frac{{dy}}{\mathrm{2}} \\ $$$${x}=\mathrm{0}\Rightarrow{y}=\mathrm{1} \\ $$$${x}=\mathrm{1}\Rightarrow{y}=\mathrm{0} \\ $$$${a}_{{n}} ={n}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {xdx}=−\frac{{n}}{\mathrm{2}}\underset{\mathrm{1}} {\overset{\mathrm{0}} {\int}}{y}^{{n}} {dy}=\frac{{n}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{y}^{{n}} {dy} \\ $$$$=\frac{{n}}{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}sin}\:\left[\frac{\pi{n}}{\mathrm{2}\left({n}+\mathrm{1}\right)}\right]=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}}{{n}+\mathrm{1}}\right)=\mathrm{sin}\:\frac{\pi}{\mathrm{2}}=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com