All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 55907 by gunawan last updated on 06/Mar/19
foreveryn∈N,fn(x)=nx(1−x2)n,foreveryx,0⩽x⩽1andan=∫01fn(x)dx.IfSn=sin(πan),foreveryn∈N,thenlimn→∞sn=...
Commented by maxmathsup by imad last updated on 06/Mar/19
wehavean=∫01nx(1−x2)ndx⇒πan=nπ∫01x(1−x2)ndxbut∫01x(1−x2)ndx=−12(n+1)[(1−x2)n+1]01=12n+2⇒πan=nπ2n+2=nπ2n(1+1n)=π2(1+1n)∼π2(1−1n)(n→+∞⇒sin(πan)∼sin(π2−π2n)⇒limn→+∞Sn=sin(π2)=1.
Answered by 121194 last updated on 06/Mar/19
an=∫10nx(1−x2)ndxy=1−x2⇒dy=−2xdx⇒xdx=−dy2x=0⇒y=1x=1⇒y=0an=n∫10(1−x2)nxdx=−n2∫01yndy=n2∫10yndy=n2(n+1)limsinn→∞[πn2(n+1)]=sin(π2limn→∞nn+1)=sinπ2=1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com