All Questions Topic List
Vector Calculus Questions
Previous in All Question Next in All Question
Previous in Vector Calculus Next in Vector Calculus
Question Number 55991 by bshahid010@gmail.com last updated on 07/Mar/19
Commented by maxmathsup by imad last updated on 07/Mar/19
letSn(x)=1n2∑k=1m[kx]wehave[kx]⩽kx<[kx]+1⇒kx−1<[kx]⩽kx⇒1n2∑k=1m(kx−1)<1n2∑k=1m[kx)⩽1n2∑k=1mkxbut1n2∑k=1m(kx−1)=x∑k=1mkn2−mn2=xm(m+1)2n2−mn2=Analso1n2∑k=1mkx=xm(m+1)n=Bmifmisfixedlimn→+∞An=0andlimn→+∞Bn=0⇒limSn(x)=0ifmisfunctionofnitsaothersubjectletsupposem∼n⇒limn→+∞An=x2=limn→+∞Bn⇒limn→+∞Sn(x)=x2.
ifn>m⇒∃qintegr/n=m+q⇒m=n−q⇒An=x(n−q)(n−q+1)2n2−n−qn2→x2(n→+∞)alsoBn=x(n−q)(n−q+1)2n2→x2⇒limn→+∞Sn(x)=x2ifn⩽m⇒m=n+q⇒⇒An=x(n+q)(n+q+)2n2−n+q2n2→x2Bn=x(n+q)(n+q+1)2n2→x2⇒limn→+∞Sn(x)=x2soatallcaseswehavelimn→+∞Sn(x)=x2erroroftypoBn=xm(m+1)2n2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com