Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 55992 by Mikael_Marshall last updated on 07/Mar/19

1 + x + x^2  + . . . + x^(99) =0  need an explanation.

1+x+x2+...+x99=0needanexplanation.

Commented by mr W last updated on 07/Mar/19

if x=−1:  1 + x + x^2  +x^3 + . . .+x^(98)  + x^(99)   =(1 + x) + (x^2  +x^3 )+ . . .+(x^(98)  + x^(99) )  =(1−1)+(1−1)+...+(1−1)  =0    or  if x=−1:  1 + x + x^2  + . . . + x^(99) =((1−x^(100) )/(1−x))=((1−1)/2)=0

ifx=1:1+x+x2+x3+...+x98+x99=(1+x)+(x2+x3)+...+(x98+x99)=(11)+(11)+...+(11)=0orifx=1:1+x+x2+...+x99=1x1001x=112=0

Commented by maxmathsup by imad last updated on 07/Mar/19

if x from C   (e) ⇔ ((1−x^(100) )/(1−x)) =0  with x≠1 ⇒x^(100) =1 =e^(i2kπ)  ⇒  x_k =e^((ikπ)/(50))       and k∈[[1,99]]  are roots of  this equation.

ifxfromC(e)1x1001x=0withx1x100=1=ei2kπxk=eikπ50andk[[1,99]]arerootsofthisequation.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com