Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 56011 by mr W last updated on 08/Mar/19

Commented by mr W last updated on 08/Mar/19

Point A is choosen at random in a  square with side length a, see figure.  What is its average distance to the  origin?  Take P(h,k)=(0,0) at first.

PointAischoosenatrandominasquarewithsidelengtha,seefigure.Whatisitsaveragedistancetotheorigin?TakeP(h,k)=(0,0)atfirst.

Answered by ajfour last updated on 08/Mar/19

   For h>k  (If  h<k  we will swap h with k)     a^2 r_(avg) ^� =∫_(√(h^2 +k^2 )) ^( (√(h^2 +(k+a)^2 ))) [cos^(−1) ((h/r))−sin^(−1) ((k/r))]r^2 dr    +∫_(√(h^2 +(k+a)^2 )) ^( (√((h+a)^2 +k^2 ))) [sin^(−1) (((k+a)/r))−sin^(−1) ((k/r))]r^2 dr   +∫_(√((h+a)^2 +k^2 )) ^( (√((h+a)^2 +(k+a)^2 ))) [sin^(−1) (((k+a)/r))−cos^(−1) (((h+a)/r))]r^2 dr .    If (h,k)≡(0,0)_(−)   a^2 r_(avg) =(π/2)∫_0 ^( a) r^2 dr+∫_a ^( a(√2)) r^2 [sin^(−1) ((a/r))−cos^(−1) ((a/r))]dr             =((πa^3 )/6)+∫_a ^( a(√2)) r^2 [(π/2)−2cos^(−1) ((a/r))]dr     =((πa^3 )/6)+((πa^3 )/6)(2(√2)−1)−2I     =((2(√2)πa^3 )/6)−2I  I=∫_a ^( a(√2)) r^2 cos^(−1) ((a/r))dr  let    cos θ=(a/r) ⇒ r=asec θ  and   dr=asec θtan θdθ  ⇒ I=∫_0 ^( π/4) a^3 θsec^3 θtan θdθ   = a^3 [θ∫_0 ^( π/4) sec^2 θ(sec θtan θdθ)               −(1/3)∫_0 ^( π/4) sec^3 θdθ ]       = a^3 [(π/4)×((2(√2))/3)−(1/3)∫_0 ^( π/4) sec^3 θdθ]  ∫sec^3 θdθ = sec θtan θ−∫sec θtan^2 θdθ  2∫sec^3 θdθ = sec θtan θ+∫sec θdθ  2∫sec^3 θdθ=sec θtan θ+ln ∣sec θ+tan θ∣+c  ⇒ 2∫_0 ^( π/4) sec^3 θ=(√2)+ln ((√2)+1)   a^2 r_(avg) =((2(√2)πa^3 )/6)−2a^3 [(π/4)×((2(√2))/3)−(1/3)∫_0 ^( π/4) sec^3 θdθ]   a^2 r_(avg) =((2(√2)πa^3 )/6)−2a^3 [(π/4)×((2(√2))/3)−(1/6)((√2)+ln ((√2)+1))]   ⇒ r_(avg) =(a/3)[(√2)+ln ((√2)+1)]   ⇒   r_(avg)  ≈ 0.765a ■

Forh>k(Ifh<kwewillswaphwithk)a2r¯avg=h2+k2h2+(k+a)2[cos1(hr)sin1(kr)]r2dr+h2+(k+a)2(h+a)2+k2[sin1(k+ar)sin1(kr)]r2dr+(h+a)2+k2(h+a)2+(k+a)2[sin1(k+ar)cos1(h+ar)]r2dr.If(h,k)(0,0)a2ravg=π20ar2dr+aa2r2[sin1(ar)cos1(ar)]dr=πa36+aa2r2[π22cos1(ar)]dr=πa36+πa36(221)2I=22πa362II=aa2r2cos1(ar)drletcosθ=arr=asecθanddr=asecθtanθdθI=0π/4a3θsec3θtanθdθ=a3[θ0π/4sec2θ(secθtanθdθ)130π/4sec3θdθ]=a3[π4×223130π/4sec3θdθ]sec3θdθ=secθtanθsecθtan2θdθ2sec3θdθ=secθtanθ+secθdθ2sec3θdθ=secθtanθ+lnsecθ+tanθ+c20π/4sec3θ=2+ln(2+1)a2ravg=22πa362a3[π4×223130π/4sec3θdθ]a2ravg=22πa362a3[π4×22316(2+ln(2+1))]ravg=a3[2+ln(2+1)]ravg0.765a

Commented by mr W last updated on 08/Mar/19

thanks alot sir!

thanksalotsir!

Answered by mr W last updated on 09/Mar/19

for P(h,k)=O:  A(x,y)=(r,θ)  d=(√(x^2 +y^2 ))=r  d_(Av) =((2∫_0 ^(π/4) ∫_0 ^(a/(cos θ)) r^2 drdθ)/a^2 )  d_(Av) =((2a)/3)∫_0 ^(π/4) (1/(cos^3  θ))dθ  d_(Av) =((2a)/3)∫_0 ^(π/4) (1/((1−sin^2  θ)^2 ))dsin θ  d_(Av) =(a/6)[ln ((1+sin θ)/(1−sin θ))+((2 tan θ)/(cos θ))]_0 ^(π/4)   d_(Av) =(a/6)(ln ((2+(√2))/(2−(√2)))+2(√2))  d_(Av) =(a/3)[ln(1+(√2))+(√2)]≈0.765a

forP(h,k)=O:A(x,y)=(r,θ)d=x2+y2=rdAv=20π40acosθr2drdθa2dAv=2a30π41cos3θdθdAv=2a30π41(1sin2θ)2dsinθdAv=a6[ln1+sinθ1sinθ+2tanθcosθ]0π4dAv=a6(ln2+222+22)dAv=a3[ln(1+2)+2]0.765a

Terms of Service

Privacy Policy

Contact: info@tinkutara.com