Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 56037 by ajfour last updated on 08/Mar/19

Commented by ajfour last updated on 08/Mar/19

Find maximum area of inner  triangle if outer one is equilateral.

$${Find}\:{maximum}\:{area}\:{of}\:{inner} \\ $$$${triangle}\:{if}\:{outer}\:{one}\:{is}\:{equilateral}. \\ $$

Commented by mr W last updated on 08/Mar/19

is it not when inner triangle is equal  to the outer one?

$${is}\:{it}\:{not}\:{when}\:{inner}\:{triangle}\:{is}\:{equal} \\ $$$${to}\:{the}\:{outer}\:{one}? \\ $$

Commented by 121194 last updated on 08/Mar/19

are you sure there not any additional condition there?

$$\mathrm{are}\:\mathrm{you}\:\mathrm{sure}\:\mathrm{there}\:\mathrm{not}\:\mathrm{any}\:\mathrm{additional}\:\mathrm{condition}\:\mathrm{there}? \\ $$

Commented by ajfour last updated on 08/Mar/19

a, b, c are not equal.

$${a},\:{b},\:{c}\:{are}\:{not}\:{equal}. \\ $$

Commented by mr W last updated on 09/Mar/19

thank you for clarifing sir!  a,b,c are given and there are many  cases, so the question is hard.

$${thank}\:{you}\:{for}\:{clarifing}\:{sir}! \\ $$$${a},{b},{c}\:{are}\:{given}\:{and}\:{there}\:{are}\:{many} \\ $$$${cases},\:{so}\:{the}\:{question}\:{is}\:{hard}. \\ $$

Answered by ajfour last updated on 11/Mar/19

let side of equilateral △ be s.  ⇒  3s=a+b+c  let bottom segments be x and s−x.  The right side segments are   c−s+x and 2s−x−c.  The left side segments are    s−b+x, and  b−x.  For the inner △ area to be maximum,  The remaining area has to be  minimum.  The blue area   A=(1/2)sin 60°[x(b−x)+(s−x)(c−s+x)                 +(2s−c−x)(s−b+x)  (dA/dx)=((√3)/4)[(b−x−x)+(−c+s−x+s          −x)+(−s+b−x+2s−c−x) ]= 0  ⇒  3s−6x+2b−2c = 0       (a+b+c)+2b−2c = 6x  ⇒   x_0 =((a+3b−c)/6)    (d^2 A/dx^2 )= −6  ⇒ A is maximum for                  x_0 =((a+3b−c)/6) .  ⇒   b−x = ((−a+3b+c)/6)  Minimum inner △ area A is       =((√3)/(36))(a+b+c)^2 −((3(√3))/4)(((9b^2 −(c−a)^2 )/(36)))     =((√3)/(36))(a+b+c)^2 − (((√3)[9b^2 −(c−a)^2 ])/(48)) .

$${let}\:{side}\:{of}\:{equilateral}\:\bigtriangleup\:{be}\:{s}. \\ $$$$\Rightarrow\:\:\mathrm{3}{s}={a}+{b}+{c} \\ $$$${let}\:{bottom}\:{segments}\:{be}\:\boldsymbol{{x}}\:{and}\:\boldsymbol{{s}}−\boldsymbol{{x}}. \\ $$$${The}\:{right}\:{side}\:{segments}\:{are}\: \\ $$$$\boldsymbol{{c}}−\boldsymbol{{s}}+\boldsymbol{{x}}\:{and}\:\mathrm{2}\boldsymbol{{s}}−\boldsymbol{{x}}−\boldsymbol{{c}}. \\ $$$${The}\:{left}\:{side}\:{segments}\:{are} \\ $$$$\:\:\boldsymbol{{s}}−\boldsymbol{{b}}+\boldsymbol{{x}},\:{and}\:\:\boldsymbol{{b}}−\boldsymbol{{x}}. \\ $$$${For}\:{the}\:{inner}\:\bigtriangleup\:{area}\:{to}\:{be}\:{maximum}, \\ $$$${The}\:{remaining}\:{area}\:{has}\:{to}\:{be} \\ $$$${minimum}. \\ $$$${The}\:{blue}\:{area}\: \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{60}°\left[{x}\left({b}−{x}\right)+\left({s}−{x}\right)\left({c}−{s}+{x}\right)\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left(\mathrm{2}{s}−{c}−{x}\right)\left({s}−{b}+{x}\right) \\ $$$$\frac{{dA}}{{dx}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\left[\left({b}−{x}−{x}\right)+\left(−{c}+{s}−{x}+{s}\right.\right. \\ $$$$\left.\:\left.\:\:\:\:\:\:\:−{x}\right)+\left(−{s}+{b}−{x}+\mathrm{2}{s}−{c}−{x}\right)\:\right]=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{3}{s}−\mathrm{6}{x}+\mathrm{2}{b}−\mathrm{2}{c}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\left({a}+{b}+{c}\right)+\mathrm{2}{b}−\mathrm{2}{c}\:=\:\mathrm{6}{x} \\ $$$$\Rightarrow\:\:\:{x}_{\mathrm{0}} =\frac{{a}+\mathrm{3}{b}−{c}}{\mathrm{6}} \\ $$$$\:\:\frac{{d}^{\mathrm{2}} {A}}{{dx}^{\mathrm{2}} }=\:−\mathrm{6}\:\:\Rightarrow\:{A}\:{is}\:{maximum}\:{for} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{0}} =\frac{{a}+\mathrm{3}{b}−{c}}{\mathrm{6}}\:. \\ $$$$\Rightarrow\:\:\:{b}−{x}\:=\:\frac{−{a}+\mathrm{3}{b}+{c}}{\mathrm{6}} \\ $$$${Minimum}\:{inner}\:\bigtriangleup\:{area}\:{A}\:{is} \\ $$$$\:\:\:\:\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{36}}\left({a}+{b}+{c}\right)^{\mathrm{2}} −\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}\left(\frac{\mathrm{9}{b}^{\mathrm{2}} −\left({c}−{a}\right)^{\mathrm{2}} }{\mathrm{36}}\right) \\ $$$$\:\:\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{36}}\left({a}+{b}+{c}\right)^{\mathrm{2}} −\:\frac{\sqrt{\mathrm{3}}\left[\mathrm{9}{b}^{\mathrm{2}} −\left({c}−{a}\right)^{\mathrm{2}} \right]}{\mathrm{48}}\:. \\ $$

Commented by mr W last updated on 10/Mar/19

very nice sir! is this the mininum  inner triangle or the maximum?

$${very}\:{nice}\:{sir}!\:{is}\:{this}\:{the}\:{mininum} \\ $$$${inner}\:{triangle}\:{or}\:{the}\:{maximum}? \\ $$

Commented by ajfour last updated on 11/Mar/19

unfortunately its the minimum  area Sir!

$${unfortunately}\:{its}\:{the}\:{minimum} \\ $$$${area}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com