Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 56045 by mr W last updated on 09/Mar/19

Commented by mr W last updated on 09/Mar/19

An ellipse with semi axes a and b has  a distance e (e>a) from its center C to  point O. Point A is choosen randomly  inside the ellipse. Let d be the distance  from A to O.  1. Find the probability that d≤e.  2. Find the average value of d.

$${An}\:{ellipse}\:{with}\:{semi}\:{axes}\:{a}\:{and}\:{b}\:{has} \\ $$$${a}\:{distance}\:{e}\:\left({e}>{a}\right)\:{from}\:{its}\:{center}\:{C}\:{to} \\ $$$${point}\:{O}.\:{Point}\:{A}\:{is}\:{choosen}\:{randomly} \\ $$$${inside}\:{the}\:{ellipse}.\:{Let}\:{d}\:{be}\:{the}\:{distance} \\ $$$${from}\:{A}\:{to}\:{O}. \\ $$$$\mathrm{1}.\:{Find}\:{the}\:{probability}\:{that}\:{d}\leqslant{e}. \\ $$$$\mathrm{2}.\:{Find}\:{the}\:{average}\:{value}\:{of}\:{d}. \\ $$

Answered by mr W last updated on 10/Mar/19

Commented by mr W last updated on 10/Mar/19

Q1:  Points in shaded area have distance  to point O which is equal or less than e,  therefore the probability is  p=((Area shaded)/(Area ellipse))    eqn. of ellipse:  (x^2 /a^2 )+(y^2 /b^2 )=1  or y=±b(√(1−(x^2 /a^2 )))  eqn. of circle:  (x+e)^2 +y^2 =e^2   or y=±(√(−x(x+2e)))    intersection:  (x^2 /a^2 )+((e^2 −(x+e)^2 )/b^2 )=1  (a^2 −b^2 )x^2 +2ea^2 x+a^2 b^2 =0  if a=b:  ⇒x=−(b^2 /(2e))=−(μ^2 /2)e=−αe  if a≠b:  ⇒x=((−ea^2 +(√(e^2 a^4 −a^2 b^2 (a^2 −b^2 ))))/(a^2 −b^2 ))  with λ=(b/a),μ=(b/e)  ⇒x=x_1 =−[((1−(√(1−μ^2 (1−λ^2 ))))/(1−λ^2 ))]e=−αe  A_(shaded) =2∫_(−a) ^( x_1 ) b(√(1−(x^2 /a^2 )))dx+2∫_x_1  ^( 0) (√(−x(x+2e)))dx  A_(shaded) =2[b∫_(αe) ^( a) (√(1−(x^2 /a^2 )))dx+∫_0 ^( αe) (√(x(2e−x)))dx]  A_(shaded) =2(((ab)/2)[(x/a)(√(1−(x^2 /a^2 )))+sin^(−1) (x/a)]_(αe) ^a +(1/2)[e^2 sin^(−1) ((x−e)/e)+(x−e)(√(x(2e−x)))]_0 ^(αe) )  A_(shaded) =ab[(x/a)(√(1−(x^2 /a^2 )))+sin^(−1) (x/a)]_(αe) ^a +e^2 [sin^(−1) (1−(x/e))+(1−(x/e))(√((x/e)(2−(x/e))))]_(αe) ^0   A_(shaded) =ab((π/2)−((αe)/a)(√(1−((α^2 e^2 )/a^2 )))−sin^(−1) ((αe)/a))+e^2 ((π/2)−sin^(−1) (1−α)−(1−α)(√(α(2−α)))  A_(ellipse) =πab  ⇒p=(1/2)(1+(e^2 /(ab)))−(1/π)[(((αe)/a))(√(1−(((αe)/a))^2 ))+sin^(−1) (((αe)/a))]−(e^2 /(πab))[sin^(−1) (1−α)+(1−α)(√(α(2−α)))]    special case with a=b=e: α=(1/2)  ⇒p=(2/3)−((√3)/(2π))≈0.391

$${Q}\mathrm{1}: \\ $$$${Points}\:{in}\:{shaded}\:{area}\:{have}\:{distance} \\ $$$${to}\:{point}\:{O}\:{which}\:{is}\:{equal}\:{or}\:{less}\:{than}\:{e}, \\ $$$${therefore}\:{the}\:{probability}\:{is} \\ $$$${p}=\frac{{Area}\:{shaded}}{{Area}\:{ellipse}} \\ $$$$ \\ $$$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${or}\:{y}=\pm{b}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }} \\ $$$${eqn}.\:{of}\:{circle}: \\ $$$$\left({x}+{e}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={e}^{\mathrm{2}} \\ $$$${or}\:{y}=\pm\sqrt{−{x}\left({x}+\mathrm{2}{e}\right)} \\ $$$$ \\ $$$${intersection}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{e}^{\mathrm{2}} −\left({x}+{e}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\mathrm{2}{ea}^{\mathrm{2}} {x}+{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{0} \\ $$$${if}\:{a}={b}: \\ $$$$\Rightarrow{x}=−\frac{{b}^{\mathrm{2}} }{\mathrm{2}{e}}=−\frac{\mu^{\mathrm{2}} }{\mathrm{2}}{e}=−\alpha{e} \\ $$$${if}\:{a}\neq{b}: \\ $$$$\Rightarrow{x}=\frac{−{ea}^{\mathrm{2}} +\sqrt{{e}^{\mathrm{2}} {a}^{\mathrm{4}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${with}\:\lambda=\frac{{b}}{{a}},\mu=\frac{{b}}{{e}} \\ $$$$\Rightarrow{x}={x}_{\mathrm{1}} =−\left[\frac{\mathrm{1}−\sqrt{\mathrm{1}−\mu^{\mathrm{2}} \left(\mathrm{1}−\lambda^{\mathrm{2}} \right)}}{\mathrm{1}−\lambda^{\mathrm{2}} }\right]{e}=−\alpha{e} \\ $$$${A}_{{shaded}} =\mathrm{2}\int_{−{a}} ^{\:{x}_{\mathrm{1}} } {b}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}{dx}+\mathrm{2}\int_{{x}_{\mathrm{1}} } ^{\:\mathrm{0}} \sqrt{−{x}\left({x}+\mathrm{2}{e}\right)}{dx} \\ $$$${A}_{{shaded}} =\mathrm{2}\left[{b}\int_{\alpha{e}} ^{\:{a}} \sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}{dx}+\int_{\mathrm{0}} ^{\:\alpha{e}} \sqrt{{x}\left(\mathrm{2}{e}−{x}\right)}{dx}\right] \\ $$$${A}_{{shaded}} =\mathrm{2}\left(\frac{{ab}}{\mathrm{2}}\left[\frac{{x}}{{a}}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}+\mathrm{sin}^{−\mathrm{1}} \frac{{x}}{{a}}\right]_{\alpha{e}} ^{{a}} +\frac{\mathrm{1}}{\mathrm{2}}\left[{e}^{\mathrm{2}} \mathrm{sin}^{−\mathrm{1}} \frac{{x}−{e}}{{e}}+\left({x}−{e}\right)\sqrt{{x}\left(\mathrm{2}{e}−{x}\right)}\right]_{\mathrm{0}} ^{\alpha{e}} \right) \\ $$$${A}_{{shaded}} ={ab}\left[\frac{{x}}{{a}}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}+\mathrm{sin}^{−\mathrm{1}} \frac{{x}}{{a}}\right]_{\alpha{e}} ^{{a}} +{e}^{\mathrm{2}} \left[\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−\frac{{x}}{{e}}\right)+\left(\mathrm{1}−\frac{{x}}{{e}}\right)\sqrt{\frac{{x}}{{e}}\left(\mathrm{2}−\frac{{x}}{{e}}\right)}\right]_{\alpha{e}} ^{\mathrm{0}} \\ $$$${A}_{{shaded}} ={ab}\left(\frac{\pi}{\mathrm{2}}−\frac{\alpha{e}}{{a}}\sqrt{\mathrm{1}−\frac{\alpha^{\mathrm{2}} {e}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}−\mathrm{sin}^{−\mathrm{1}} \frac{\alpha{e}}{{a}}\right)+{e}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−\alpha\right)−\left(\mathrm{1}−\alpha\right)\sqrt{\alpha\left(\mathrm{2}−\alpha\right.}\right) \\ $$$${A}_{{ellipse}} =\pi{ab} \\ $$$$\Rightarrow{p}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{{e}^{\mathrm{2}} }{{ab}}\right)−\frac{\mathrm{1}}{\pi}\left[\left(\frac{\alpha{e}}{{a}}\right)\sqrt{\mathrm{1}−\left(\frac{\alpha{e}}{{a}}\right)^{\mathrm{2}} }+\mathrm{sin}^{−\mathrm{1}} \left(\frac{\alpha{e}}{{a}}\right)\right]−\frac{{e}^{\mathrm{2}} }{\pi{ab}}\left[\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−\alpha\right)+\left(\mathrm{1}−\alpha\right)\sqrt{\alpha\left(\mathrm{2}−\alpha\right)}\right] \\ $$$$ \\ $$$${special}\:{case}\:{with}\:{a}={b}={e}:\:\alpha=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{p}=\frac{\mathrm{2}}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}\pi}\approx\mathrm{0}.\mathrm{391} \\ $$

Commented by mr W last updated on 10/Mar/19

Q2:  eqn. of ellipse:  (x^2 /a^2 )+(y^2 /b^2 )=1  or r=((ab)/(√(a^2 sin^2  θ+b^2 cos^2  θ)))  A(r,θ)  OA=d=(√((e+r cos θ)^2 +(r sin θ)^2 ))=(√(e^2 +r^2 +2er cos θ))  d_(av) =(2/(πab))∫_0 ^π ∫_0 ^((ab)/(√(a^2 sin^2  θ+b^2 cos^2  θ))) (√(e^2 +r^2 +2er cos θ)) rdrdθ  ...

$${Q}\mathrm{2}: \\ $$$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${or}\:{r}=\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}} \\ $$$${A}\left({r},\theta\right) \\ $$$${OA}={d}=\sqrt{\left({e}+{r}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\left({r}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} }=\sqrt{{e}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{er}\:\mathrm{cos}\:\theta} \\ $$$${d}_{{av}} =\frac{\mathrm{2}}{\pi{ab}}\int_{\mathrm{0}} ^{\pi} \int_{\mathrm{0}} ^{\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}}} \sqrt{{e}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{er}\:\mathrm{cos}\:\theta}\:{rdrd}\theta \\ $$$$... \\ $$

Commented by behi83417@gmail.com last updated on 10/Mar/19

great job done dear master.thank you  very much for good question and also  so nice solution.

$${great}\:{job}\:{done}\:{dear}\:{master}.{thank}\:{you} \\ $$$${very}\:{much}\:{for}\:{good}\:{question}\:{and}\:{also} \\ $$$${so}\:{nice}\:{solution}. \\ $$

Commented by mr W last updated on 10/Mar/19

thanks alot sir!

$${thanks}\:{alot}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com