Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 56141 by gunawan last updated on 11/Mar/19

If (1+x)^n =C_0 +C_1 x+C_2 x^2 +...+C_n x^n , then  for n odd, C_0 ^2 −C_1 ^2 +C_2 ^2 −C_3 ^2 +...+(−1)^n C_n ^2   is equal to

$$\mathrm{If}\:\left(\mathrm{1}+{x}\right)^{{n}} ={C}_{\mathrm{0}} +{C}_{\mathrm{1}} {x}+{C}_{\mathrm{2}} {x}^{\mathrm{2}} +...+{C}_{{n}} {x}^{{n}} ,\:\mathrm{then} \\ $$$$\mathrm{for}\:{n}\:\mathrm{odd},\:{C}_{\mathrm{0}} \:^{\mathrm{2}} −{C}_{\mathrm{1}} \:^{\mathrm{2}} +{C}_{\mathrm{2}} \:^{\mathrm{2}} −{C}_{\mathrm{3}} \:^{\mathrm{2}} +...+\left(−\mathrm{1}\right)^{{n}} {C}_{{n}} \:^{\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Mar/19

(1+x)^n =c_0 +c_1 x+c_2 x^2 +...+c_n x^n   (1−(1/x))^n =c_0 −c_1 ×(1/x)+c_2 ×(1/x^2 )+...+(−1)^n ×(1/x^n )  {(1+x)(1−(1/x))}^n   ={1−(1/x)+x−1}^n   =(x−(1/x))^n   let r+1 th term contains x^0 [x independent term]  nc_r (x)^(n−r) (((−1)/x))^r   ((n!)/(r!(n−r)!))×x^(n−r) ×(−1)^r ×(1/x^r )  ((n!)/(r!(n−r)!))×(−1)^r ×x^(n−2r)   so n−2r=0   →r=(n/2)  hence  c_0 ^2 −c_1 ^2 +c_2 ^2  ....+(−1)^n c_n ^2 =((n!)/(((n/2))!((n/2))!))×(−1)^(n/2)

$$\left(\mathrm{1}+{x}\right)^{{n}} ={c}_{\mathrm{0}} +{c}_{\mathrm{1}} {x}+{c}_{\mathrm{2}} {x}^{\mathrm{2}} +...+{c}_{{n}} {x}^{{n}} \\ $$$$\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)^{{n}} ={c}_{\mathrm{0}} −{c}_{\mathrm{1}} ×\frac{\mathrm{1}}{{x}}+{c}_{\mathrm{2}} ×\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+...+\left(−\mathrm{1}\right)^{{n}} ×\frac{\mathrm{1}}{{x}^{{n}} } \\ $$$$\left\{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)\right\}^{{n}} \\ $$$$=\left\{\mathrm{1}−\frac{\mathrm{1}}{{x}}+{x}−\mathrm{1}\right\}^{{n}} \\ $$$$=\left({x}−\frac{\mathrm{1}}{{x}}\right)^{{n}} \\ $$$${let}\:{r}+\mathrm{1}\:{th}\:{term}\:{contains}\:{x}^{\mathrm{0}} \left[{x}\:{independent}\:{term}\right] \\ $$$${nc}_{{r}} \left({x}\right)^{{n}−{r}} \left(\frac{−\mathrm{1}}{{x}}\right)^{{r}} \\ $$$$\frac{{n}!}{{r}!\left({n}−{r}\right)!}×{x}^{{n}−{r}} ×\left(−\mathrm{1}\right)^{{r}} ×\frac{\mathrm{1}}{{x}^{{r}} } \\ $$$$\frac{{n}!}{{r}!\left({n}−{r}\right)!}×\left(−\mathrm{1}\right)^{{r}} ×{x}^{{n}−\mathrm{2}{r}} \\ $$$${so}\:{n}−\mathrm{2}{r}=\mathrm{0}\:\:\:\rightarrow{r}=\frac{{n}}{\mathrm{2}} \\ $$$${hence} \\ $$$${c}_{\mathrm{0}} ^{\mathrm{2}} −{c}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} \:....+\left(−\mathrm{1}\right)^{{n}} {c}_{{n}} ^{\mathrm{2}} =\frac{{n}!}{\left(\frac{{n}}{\mathrm{2}}\right)!\left(\frac{{n}}{\mathrm{2}}\right)!}×\left(−\mathrm{1}\right)^{\frac{{n}}{\mathrm{2}}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com