Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 56144 by gunawan last updated on 11/Mar/19

calculate (i−1)^(49) (cos (π/(40))+i sin (π/(40)))^(10)

calculate(i1)49(cosπ40+isinπ40)10

Answered by Smail last updated on 11/Mar/19

(i−1)^(49) =[(√2)(((√2)/2)−i((√2)/2))]^(49)   =(√2^(49) )(e^(i(π/4)) )^(49) =2^(24) (√2)e^(i((49π)/4)) =2^(24) (√2)e^(i((π/4)+12π))   =2^(24) (√2)e^(i(π/4))   (cos(π/(40))+isin(π/(40)))^(10) =(e^(i(π/(40))) )^(10) =e^(i(π/4))   (i−1)^(49) (cos(π/(40))+isin(π/(40)))^(10) =(2^(24) (√2)e^(i(π/4)) )e^(i(π/4))   =2^(24) (√2)e^(i(π/2))   =2^(24) (√2)i

(i1)49=[2(22i22)]49=249(eiπ4)49=2242ei49π4=2242ei(π4+12π)=2242eiπ4(cosπ40+isinπ40)10=(eiπ40)10=eiπ4(i1)49(cosπ40+isinπ40)10=(2242eiπ4)eiπ4=2242eiπ2=2242i

Terms of Service

Privacy Policy

Contact: info@tinkutara.com